Open-source Laplacian Eigenmaps for dimensionality reduction of large data in python.

Overview

Latest PyPI version License: MIT Twitter

Fast Laplacian Eigenmaps in python

Open-source Laplacian Eigenmaps for dimensionality reduction of large data in python. Comes with an wrapper for NMSlib to compute approximate-nearest-neighbors. Performs several times faster than the default scikit-learn implementation.

Installation

You'll need NMSlib for using this package properly. Installing it with no binaries is recommended if your CPU supports advanced instructions (it problably does):

pip3 install --no-binary :all: nmslib
# Along with requirements:
pip3 install numpy pandas scipy scikit-learn 

Then you can install this package with pip:

pip3 install fastlapmap

Usage

See the following example with the handwritten digits data. Here, I visually compare results from the scikit-learn Laplacian Eigenmaps implementation to those from my implementation.

Note that this implementation contains two similarity-learning algorithms: anisotropic diffusion maps and fuzzy simplicial sets.

# Import libraries
import numpy as np
import matplotlib.pyplot as plt
from sklearn.manifold import SpectralEmbedding
from fastlapmap import LapEigenmap

# Load some data
from sklearn.datasets import load_digits
digits = load_digits()
data = digits.data

# Define hyperparameters
N_EIGS=2
N_NEIGHBORS=10
N_JOBS=10

sk_se = SpectralEmbedding(n_components=N_EIGS, n_neighbors=N_NEIGHBORS, n_jobs=N_JOBS).fit_transform(data)

flapmap_diff = LapEigenmap(data, n_eigs=2, similarity='diffusion', norm_laplacian=True, k=N_NEIGHBORS, n_jobs=N_JOBS)
flapmap_fuzzy = LapEigenmap(data, n_eigs=2, similarity='fuzzy', norm_laplacian=True, k=N_NEIGHBORS, n_jobs=N_JOBS)

fig, (ax1, ax2, ax3) = plt.subplots(1, 3)
fig.suptitle('Handwritten digits data:', fontsize=24)
ax1.scatter(sk_se[:, 0], sk_se[:, 1], c=digits.target, cmap='Spectral', s=5)
ax1.set_title('Sklearn\'s Laplacian Eigenmaps', fontsize=20)
ax2.scatter(flapmap_diff[:, 0], flapmap_diff[:, 1], c=digits.target, cmap='Spectral', s=5)
ax2.set_title('Fast Laplacian Eigenmaps with diffusion harmonics', fontsize=20)
ax3.scatter(flapmap_fuzzy[:, 0], flapmap_fuzzy[:, 1], c=digits.target, cmap='Spectral', s=5)
ax3.set_title('Fast Laplacian Eigenmaps with fuzzy simplicial sets', fontsize=20)
plt.show()

As we can see, results are nearly identical.

Benchmark

See the runtime comparison between this implementation and scikit-learn:

## Load benchmark function:
from fastlapmap.benchmark import runtime_benchmark

# Load data
from sklearn.datasets import load_digits
digits = load_digits()
data = digits.data

# Define hyperparameters
N_EIGS = 2
N_NEIGHBORS = 10
N_JOBS = 10
SIZES = [1000, 5000, 10000, 25000, 50000, 100000]
N_RUNS = 3

runtime_benchmark(data,
                  n_eigs=N_EIGS,
                  n_neighbors=N_NEIGHBORS,
                  n_jobs=N_JOBS,
                  sizes=SIZES,
                  n_runs=N_RUNS)

As you can see, the diffusion harmoics model is the fastest, followed closely by fuzzy simplicial sets. Both outperform scikit-learn default implementation and escalate linearly with sample size.

Owner
Topological data analysis, dimensional reduction, and single-cell biology. Coding in-between seeing patients at the hospital.
Senator Trades Monitor

Senator Trades Monitor This monitor will grab the most recent trades by senators and send them as a webhook to discord. Installation To use the monito

Yousaf Cheema 5 Jun 11, 2022
Random dataframe and database table generator

Random database/dataframe generator Authored and maintained by Dr. Tirthajyoti Sarkar, Fremont, USA Introduction Often, beginners in SQL or data scien

Tirthajyoti Sarkar 249 Jan 08, 2023
BigDL - Evaluate the performance of BigDL (Distributed Deep Learning on Apache Spark) in big data analysis problems

Evaluate the performance of BigDL (Distributed Deep Learning on Apache Spark) in big data analysis problems.

Vo Cong Thanh 1 Jan 06, 2022
Helper tools to construct probability distributions built from expert elicited data for use in monte carlo simulations.

Elicited Helper tools to construct probability distributions built from expert elicited data for use in monte carlo simulations. Credit to Brett Hoove

Ryan McGeehan 3 Nov 04, 2022
track your GitHub statistics

GitHub-Stalker track your github statistics 👀 features find new followers or unfollowers find who got a star on your project or remove stars find who

Bahadır Araz 34 Nov 18, 2022
Catalogue data - A Python Scripts to prepare catalogue data

catalogue_data Scripts to prepare catalogue data. Setup Clone this repo. Install

BigScience Workshop 3 Mar 03, 2022
An implementation of the largeVis algorithm for visualizing large, high-dimensional datasets, for R

largeVis This is an implementation of the largeVis algorithm described in (https://arxiv.org/abs/1602.00370). It also incorporates: A very fast algori

336 May 25, 2022
Collections of pydantic models

pydantic-collections The pydantic-collections package provides BaseCollectionModel class that allows you to manipulate collections of pydantic models

Roman Snegirev 20 Dec 26, 2022
Accurately separate the TLD from the registered domain and subdomains of a URL, using the Public Suffix List.

tldextract Python Module tldextract accurately separates the gTLD or ccTLD (generic or country code top-level domain) from the registered domain and s

John Kurkowski 1.6k Jan 03, 2023
Data Competition: automated systems that can detect whether people are not wearing masks or are wearing masks incorrectly

Table of contents Introduction Dataset Model & Metrics How to Run Quickstart Install Training Evaluation Detection DATA COMPETITION The COVID-19 pande

Thanh Dat Vu 1 Feb 27, 2022
A powerful data analysis package based on mathematical step functions. Strongly aligned with pandas.

The leading use-case for the staircase package is for the creation and analysis of step functions. Pretty exciting huh. But don't hit the close button

48 Dec 21, 2022
.npy, .npz, .mtx converter.

npy-converter Matrix Data Converter. Expand matrix for multi-thread, multi-process Divid matrix for multi-thread, multi-process Support: .mtx, .npy, .

taka 1 Feb 07, 2022
Active Learning demo using two small datasets

ActiveLearningDemo How to run step one put the dataset folder and use command below to split the dataset to the required structure run utils.py For ea

3 Nov 10, 2021
sportsdataverse python package

sportsdataverse-py See CHANGELOG.md for details. The goal of sportsdataverse-py is to provide the community with a python package for working with spo

Saiem Gilani 37 Dec 27, 2022
Statistical Rethinking: A Bayesian Course Using CmdStanPy and Plotnine

Statistical Rethinking: A Bayesian Course Using CmdStanPy and Plotnine Intro This repo contains the python/stan version of the Statistical Rethinking

Andrés Suárez 3 Nov 08, 2022
cLoops2: full stack analysis tool for chromatin interactions

cLoops2: full stack analysis tool for chromatin interactions Introduction cLoops2 is an extension of our previous work, cLoops. From loop-calling base

YaqiangCao 25 Dec 14, 2022
Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis

Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis. You write a high level configuration file specifying your in

Blue Collar Bioinformatics 917 Jan 03, 2023
yt is an open-source, permissively-licensed Python library for analyzing and visualizing volumetric data.

The yt Project yt is an open-source, permissively-licensed Python library for analyzing and visualizing volumetric data. yt supports structured, varia

The yt project 367 Dec 25, 2022
Full automated data pipeline using docker images

Create postgres tables from CSV files This first section is only relate to creating tables from CSV files using postgres container alone. Just one of

1 Nov 21, 2021
For making Tagtog annotation into csv dataset

tagtog_relation_extraction for making Tagtog annotation into csv dataset How to Use On Tagtog 1. Go to Project Downloads 2. Download all documents,

hyeong 4 Dec 28, 2021