Random dataframe and database table generator

Overview

Random database/dataframe generator

Authored and maintained by Dr. Tirthajyoti Sarkar, Fremont, USA

Introduction

Often, beginners in SQL or data science struggle with the matter of easy access to a large sample database file (.DB or .sqlite) for practicing SQL commands. Would it not be great to have a simple tool or library to generate a large database with multiple tables, filled with data of one's own choice?

After all, databases break every now and then and it is safest to practice with a randomly generated one :-)

https://imgs.xkcd.com/comics/exploits_of_a_mom.png

While it is easy to generate random numbers or simple words for Pandas or dataframe operation learning, it is often non-trivial to generate full data tables with meaningful yet random entries of most commonly encountered fields in the world of database, such as

  • name,
  • age,
  • birthday,
  • credit card number,
  • SSN,
  • email id,
  • physical address,
  • company name,
  • job title,

This Python package generates a random database TABLE (or a Pandas dataframe, or an Excel file) based on user's choice of data types (database fields). User can specify the number of samples needed. One can also designate a "PRIMARY KEY" for the database table. Finally, the TABLE is inserted into a new or existing database file of user's choice.

https://raw.githubusercontent.com/tirthajyoti/pydbgen/master/images/Top_image_1.png

Dependency and Acknowledgement

At its core, pydbgen uses Faker as the default random data generating engine for most of the data types. Original function is written for few data types such as realistic email and license plate. Also the default phone number generated by Faker is free-format and does not correspond to US 10 digit format. Therefore, a simple phone number data type is introduced in pydbgen. The original contribution of pydbgen is to take the single data-generating function from Faker and use it cleverly to generate Pandas data series or dataframe or SQLite database tables as per the specification of the user. Here is the link if you want to look up more about Faker package,

Faker Documentation Home

Installation

(On Linux and Windows) You can use pip to install pydbgen:

pip install pydbgen

(On Mac OS), first install pip,

curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
python get-pip.py

Then proceed as above.

Usage

Current version (1.0.0) of pydbgen comes with the following primary methods,

  • gen_data_series()
  • gen_dataframe()
  • gen_table()
  • gen_excel()

The gen_table() method allows you to build a database with as many tables as you want, filled with random data and fields of your choice. But first, you have to create an object of pydb class:

myDB = pydbgen.pydb()

gen_data_series()

Returns a Pandas series object with the desired number of entries and data type. Data types available:

  • Name, country, city, real (US) cities, US state, zipcode, latitude, longitude
  • Month, weekday, year, time, date
  • Personal email, official email, SSN
  • Company, Job title, phone number, license plate

Phone number can be of two types:

  • phone_number_simple generates 10 digit US number in xxx-xxx-xxxx format
  • phone_number_full may generate an international number with different format

Code example:

se=myDB.gen_data_series(data_type='date')
print(se)

0    1995-08-09
1    2001-08-01
2    1980-06-26
3    2018-02-18
4    1972-10-12
5    1983-11-12
6    1975-09-04
7    1970-11-01
8    1978-03-23
9    1976-06-03
dtype: object

gen_dataframe()

Generates a Pandas dataframe filled with random entries. User can specify the number of rows and data type of the fields/columns.

  • Name, country, city, real (US) cities, US state, zipcode, latitude, longitude
  • Month, weekday, year, time, date
  • Personal email, official email, SSN
  • Company, Job title, phone number, license plate

Customization choices are following:

  • real_email: If True and if a person's name is also included in the fields, a realistic email will be generated corresponding to the name of the person. For example, Tirtha Sarkar name with this choice enabled, will generate emails like [email protected] or [email protected].
  • real_city: If True, a real US city's name will be picked up from a list (included as a text data file with the installation package). Otherwise, a fictitious city name will be generated.
  • phone_simple: If True, a 10 digit US number in the format xxx-xxx-xxxx will be generated. Otherwise, an international number with different format may be returned.

Code example:

testdf=myDB.gen_dataframe(
25,fields=['name','city','phone',
'license_plate','email'],
real_email=True,phone_simple=True
)

gen_table()

Attempts to create a table in a database (.db) file using Python's built-in SQLite engine. User can specify various data types to be included as database table fields.

All data types (fields) in the SQLite table will be of VARCHAR type. Data types available:

  • Name, country, city, real (US) cities, US state, zipcode, latitude, longitude
  • Month, weekday, year, time, date
  • Personal email, official email, SSN
  • Company, Job title, phone number, license plate

Customization choices are following:

  • real_email: If True and if a person's name is also included in the fields, a realistic email will be generated corresponding to the name of the person. For example, Tirtha Sarkar name with this choice enabled, will generate emails like [email protected] or [email protected].
  • real_city: If True, a real US city's name will be picked up from a list (included as a text data file with the installation package). Otherwise, a fictitious city name will be generated.
  • phone_simple: If True, a 10 digit US number in the format xxx-xxx-xxxx will be generated. Otherwise, an international number with different format may be returned.
  • db_file: Name of the database where the TABLE will be created or updated. Default database name will be chosen if not specified by user.
  • table_name: Name of the table, to be chosen by user. Default table name will be chosen if not specified by user.
  • primarykey: User can choose a PRIMARY KEY from among the various fields. If nothing specified, the first data field will be made PRIMARY KEY. If user chooses a field, which is not in the specified list, an error will be thrown and no table will be generated.

Code example:

myDB.gen_table(
20,fields=['name','city','job_title','phone','company','email'],
db_file='TestDB.db',table_name='People',
primarykey='name',real_city=False
)

gen_excel()

Attempts to create an Excel file using Pandas excel_writer function. User can specify various data types to be included. All data types (fields) in the Excel file will be of text type. Data types available:

  • Name, country, city, real (US) cities, US state, zipcode, latitude, longitude
  • Month, weekday, year, time, date
  • Personal email, official email, SSN
  • Company, Job title, phone number, license plate

Customization choices are following:

  • real_email: If True and if a person's name is also included in the fields, a realistic email will be generated corresponding to the name of the person. For example, Tirtha Sarkar name with this choice enabled, will generate emails like [email protected] or [email protected].
  • real_city: If True, a real US city's name will be picked up from a list (included as a text data file with the installation package). Otherwise, a fictitious city name will be generated.
  • phone_simple: If True, a 10 digit US number in the format xxx-xxx-xxxx will be generated. Otherwise, an international number with different format may be returned.
  • filename: Name of the Excel file to be created or updated. Default file name will be chosen if not specified by user.

Code example:

myDB.gen_excel(15,fields=['name','year','email','license_plate'],
        filename='TestExcel.xlsx',real_email=True)

Other auxiliary methods available

Few other auxiliary functions available in this package.

Owner
Tirthajyoti Sarkar
Data Sc/Engineering manager , Industry 4.0, edge-computing, semiconductor technologist, Author, Python pkgs - pydbgen, MLR, and doepy,
Tirthajyoti Sarkar
đŸ§Ș Panel-Chemistry - exploratory data analysis and build powerful data and viz tools within the domain of Chemistry using Python and HoloViz Panel.

đŸ§Ș📈 🐍. The purpose of the panel-chemistry project is to make it really easy for you to do DATA ANALYSIS and build powerful DATA AND VIZ APPLICATIONS within the domain of Chemistry using using Python a

Marc Skov Madsen 97 Dec 08, 2022
The lastest all in one bombing tool coded in python uses tbomb api

BaapG-Attack is a python3 based script which is officially made for linux based distro . It is inbuit mass bomber with sms, mail, calls and many more bombing

59 Dec 25, 2022
Desafio proposto pela IGTI em seu bootcamp de Cloud Data Engineer

Desafio Modulo 4 - Cloud Data Engineer Bootcamp - IGTI Objetivos Criar infraestrutura como cĂłdigo Utuilizando um cluster Kubernetes na Azure IngestĂŁo

Otacilio Filho 4 Jan 23, 2022
Deep universal probabilistic programming with Python and PyTorch

Getting Started | Documentation | Community | Contributing Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. Notab

7.7k Dec 30, 2022
collect training and calibration data for gaze tracking

Collect Training and Calibration Data for Gaze Tracking This tool allows collecting gaze data necessary for personal calibration or training of eye-tr

Pascal 5 Dec 17, 2022
Probabilistic Programming in Python: Bayesian Modeling and Probabilistic Machine Learning with Theano

PyMC3 is a Python package for Bayesian statistical modeling and Probabilistic Machine Learning focusing on advanced Markov chain Monte Carlo (MCMC) an

PyMC 7.2k Dec 30, 2022
statDistros is a Python library for dealing with various statistical distributions

StatisticalDistributions statDistros statDistros is a Python library for dealing with various statistical distributions. Now it provides various stati

1 Oct 03, 2021
Pipeline to convert a haploid assembly into diploid

HapDup (haplotype duplicator) is a pipeline to convert a haploid long read assembly into a dual diploid assembly. The reconstructed haplotypes

Mikhail Kolmogorov 50 Jan 05, 2023
Analytical view of olist e-commerce in Brazil

Analysis of E-Commerce Public Dataset by Olist The objective of this project is to propose an analytical view of olist e-commerce in Brazil. For this

Gurpreet Singh 1 Jan 11, 2022
ELFXtract is an automated analysis tool used for enumerating ELF binaries

ELFXtract ELFXtract is an automated analysis tool used for enumerating ELF binaries Powered by Radare2 and r2ghidra This is specially developed for PW

Monish Kumar 49 Nov 28, 2022
PandaPy has the speed of NumPy and the usability of Pandas 10x to 50x faster (by @firmai)

PandaPy "I came across PandaPy last week and have already used it in my current project. It is a fascinating Python library with a lot of potential to

Derek Snow 527 Jan 02, 2023
MIR Cheatsheet - Survival Guidebook for MIR Researchers in the Lab

MIR Cheatsheet - Survival Guidebook for MIR Researchers in the Lab

SeungHeonDoh 3 Jul 02, 2022
A probabilistic programming language in TensorFlow. Deep generative models, variational inference.

Edward is a Python library for probabilistic modeling, inference, and criticism. It is a testbed for fast experimentation and research with probabilis

Blei Lab 4.7k Jan 09, 2023
Projects that implement various aspects of Data Engineering.

DATAWAREHOUSE ON AWS The purpose of this project is to build a datawarehouse to accomodate data of active user activity for music streaming applicatio

2 Oct 14, 2021
A model checker for verifying properties in epistemic models

Epistemic Model Checker This is a model checker for verifying properties in epistemic models. The goal of the model checker is to check for Pluralisti

Thomas TrÀff 2 Dec 22, 2021
CS50 pset9: Using flask API to create a web application to exchange stocks' shares.

C$50 Finance In this guide we want to implement a website via which users can “register”, “login” “buy” and “sell” stocks, like below: Background If y

1 Jan 24, 2022
This repo is dedicated to the data extraction and manipulation of the World Bank's database called STEP.

Overview Welcome to the Step-X repository. This repo is dedicated to the data extraction and manipulation of the World Bank's database called STEP. Be

Keanu Pang 0 Jan 20, 2022
An Aspiring Drop-In Replacement for NumPy at Scale

Legate NumPy is a Legate library that aims to provide a distributed and accelerated drop-in replacement for the NumPy API on top of the Legion runtime. Using Legate NumPy you do things like run the f

Legate 502 Jan 03, 2023
This program analyzes a DNA sequence and outputs snippets of DNA that are likely to be protein-coding genes.

This program analyzes a DNA sequence and outputs snippets of DNA that are likely to be protein-coding genes.

1 Dec 28, 2021
DataPrep — The easiest way to prepare data in Python

DataPrep — The easiest way to prepare data in Python

SFU Database Group 1.5k Dec 27, 2022