CS50 pset9: Using flask API to create a web application to exchange stocks' shares.

Overview

C$50 Finance

In this guide we want to implement a website via which users can “register”, “login” “buy” and “sell” stocks, like below:

Picture of dashboard

Background

If you’re not quite sure what it means to buy and sell stocks (i.e., shares of a company), head here for a tutorial.

We’re about to implement C$50 Finance, a web app via which you can manage portfolios of stocks. Not only will this tool allow us to check real stocks’ actual prices and portfolios’ values, it will also let you buy and sell stocks by querying IEX for stocks’ prices.

Indeed, IEX lets you download stock quotes via their API (application programming interface) using URLs like https://cloud.iexapis.com/stable/stock/nflx/quote?token=API_KEY.

Before getting started on this project, we’ll need to register for an API key in order to be able to query IEX’s data. To do so, follow these steps:

  • Visit iexcloud.io/cloud-login#/register/.
  • Select the “Individual” account type, then enter your email address and a password, and click “Create account”.
  • Once registered, scroll down to “Get started for free” and click “Select Start” to choose the free plan.
  • Once you’ve confirmed your account via a confirmation email, visit (https://iexcloud.io/console/tokens).
  • Copy the key that appears under the Token column (it should begin with pk_).
  • In a terminal window execute:
export API_KEY=value

where value is that (pasted) value, without any space immediately before or after the =. You also may wish to paste that value in a text document somewhere, in case you need it again later.

Install requirements

This guide wrote for Windows Terminal and if you have another OS you may change it.

Before we start, you should clone this GitHub repo and then install the dependencies.

git clone https://github.com/magnooj/CS50-finance.git
cd CS50-fincance
pip install -r requirements.txt

Through the files

Now, we are ready to run and test our project. By running ls you can see these files:

Flask API

The first step in building APIs is to think about the data we want to handle, how we want to handle it and what output we want with our APIs. In our example, we want users can register, log in, log out and buy, sell and qout stocks; Finally, see the history of their transactions.

The main HTML file in our app is layout.html. We created a template that other HTML files cand extend that.

In this example, we create Flask eight routs so that we can serve HTTP traffic on that route.

  • / or index : Is the homepage of our app. If user loged in, it display the user’s current cash balance along with a grand total (i.e., stocks’ total value plus cash). But, if user didn.t log in, it displays the login page.
  • register : It has a form that user can register by filling it.
  • buy : In this route, users can input a stock’s symbol and buy some shares.
  • sell : In this page, users can SELECT from theis stocks’ symbol and sell their shares.
  • qoute : Users can lookup the price each share in a stock’s symbol.
  • history : It displays an HTML table summarizing all of a user’s transactions ever, listing row by row each and every buy and every sell.
  • login and logout : These routes start and terminate user’s session.

Of course there is some files like apology.html that displays the error to the user. You can check other files.

Now, We cheked our files and sqw how our app is working. To run the app, when you are in CS50-finance directory, enter this command in the terminal:

flask run

I hope you enjoyed how to stocks' exchange web application using flask. if you have any comments please do not hesitate to send me an e-mail.

Regards,

Ali Ganjizadeh

This cosmetics generator allows you to generate the new Fortnite cosmetics, Search pak and search cosmetics!

COSMETICS GENERATOR This cosmetics generator allows you to generate the new Fortnite cosmetics, Search pak and search cosmetics! Remember to put the l

ᴅᴊʟᴏʀ3xᴢᴏ 11 Dec 13, 2022
Extract data from a wide range of Internet sources into a pandas DataFrame.

pandas-datareader Up to date remote data access for pandas, works for multiple versions of pandas. Installation Install using pip pip install pandas-d

Python for Data 2.5k Jan 09, 2023
NumPy and Pandas interface to Big Data

Blaze translates a subset of modified NumPy and Pandas-like syntax to databases and other computing systems. Blaze allows Python users a familiar inte

Blaze 3.1k Jan 05, 2023
An extension to pandas dataframes describe function.

pandas_summary An extension to pandas dataframes describe function. The module contains DataFrameSummary object that extend describe() with: propertie

Mourad 450 Dec 30, 2022
wikirepo is a Python package that provides a framework to easily source and leverage standardized Wikidata information

Python based Wikidata framework for easy dataframe extraction wikirepo is a Python package that provides a framework to easily source and leverage sta

Andrew Tavis McAllister 35 Jan 04, 2023
A variant of LinUCB bandit algorithm with local differential privacy guarantee

Contents LDP LinUCB Description Model Architecture Dataset Environment Requirements Script Description Script and Sample Code Script Parameters Launch

Weiran Huang 4 Oct 25, 2022
Py-price-monitoring - A Python price monitor

A Python price monitor This project was focused on Brazil, so the monitoring is

Samuel 1 Jan 04, 2022
💬 Python scripts to parse Messenger, Hangouts, WhatsApp and Telegram chat logs into DataFrames.

Chatistics Python 3 scripts to convert chat logs from various messaging platforms into Pandas DataFrames. Can also generate histograms and word clouds

Florian 893 Jan 02, 2023
GWpy is a collaboration-driven Python package providing tools for studying data from ground-based gravitational-wave detectors

GWpy is a collaboration-driven Python package providing tools for studying data from ground-based gravitational-wave detectors. GWpy provides a user-f

GWpy 342 Jan 07, 2023
Evaluation of a Monocular Eye Tracking Set-Up

Evaluation of a Monocular Eye Tracking Set-Up As part of my master thesis, I implemented a new state-of-the-art model that is based on the work of Che

Pascal 19 Dec 17, 2022
Python package for analyzing behavioral data for Brain Observatory: Visual Behavior

Allen Institute Visual Behavior Analysis package This repository contains code for analyzing behavioral data from the Allen Brain Observatory: Visual

Allen Institute 16 Nov 04, 2022
Visions provides an extensible suite of tools to support common data analysis operations

Visions And these visions of data types, they kept us up past the dawn. Visions provides an extensible suite of tools to support common data analysis

168 Dec 28, 2022
The Spark Challenge Student Check-In/Out Tracking Script

The Spark Challenge Student Check-In/Out Tracking Script This Python Script uses the Student ID Database to match the entries with the ID Card Swipe a

1 Dec 09, 2021
Using approximate bayesian posteriors in deep nets for active learning

Bayesian Active Learning (BaaL) BaaL is an active learning library developed at ElementAI. This repository contains techniques and reusable components

ElementAI 687 Dec 25, 2022
Tkinter Izhikevich Neuron Model With Python

TKINTER IZHIKEVICH NEURON MODEL WITH PYTHON Hodgkin-Huxley Model It is a mathematical model for the generation and transmission of action potentials i

Rabia KOÇ 8 Jul 16, 2022
CRISP: Critical Path Analysis of Microservice Traces

CRISP: Critical Path Analysis of Microservice Traces This repo contains code to compute and present critical path summary from Jaeger microservice tra

Uber Research 110 Jan 06, 2023
apricot implements submodular optimization for the purpose of selecting subsets of massive data sets to train machine learning models quickly.

Please consider citing the manuscript if you use apricot in your academic work! You can find more thorough documentation here. apricot implements subm

Jacob Schreiber 457 Dec 20, 2022
First and foremost, we want dbt documentation to retain a DRY principle. Every time we repeat ourselves, we waste our time. Second, we want to understand column level lineage and automate impact analysis.

dbt-osmosis First and foremost, we want dbt documentation to retain a DRY principle. Every time we repeat ourselves, we waste our time. Second, we wan

Alexander Butler 150 Jan 06, 2023
Weather analysis with Python, SQLite, SQLAlchemy, and Flask

Surf's Up Weather analysis with Python, SQLite, SQLAlchemy, and Flask Overview The purpose of this analysis was to examine weather trends (precipitati

Art Tucker 1 Sep 05, 2021
A Python and R autograding solution

Otter-Grader Otter Grader is a light-weight, modular open-source autograder developed by the Data Science Education Program at UC Berkeley. It is desi

Infrastructure Team 93 Jan 03, 2023