Making the DAEN information accessible.

Overview

AccessibleAdverseEventNotification

Making the DAEN information accessible.

The purpose of this repository is to make the information on Australian COVID-19 adverse events accessible. The Therapeutics Goods Administration (TGA) keeps a database of adverse reactions to medications including the COVID-19 vaccines. This Database of Adverse Event Notifications (DAEN) is available to the public via this awful web interface. The most recent two weeks is never available.

The DAEN website doesn't provide information in a format that might be useful for analysis. Instead you have to scrape the information by entering each individual day and collecting the results from two tables which might span multiple pages. I've already done that and the code is here (this code isn't great, but it is good enough to get the job done).

Please be aware that the numbers reported in DAEN are probably significantly less than the actual number of adverse events and deaths. As the DAEN website states:

Adverse event reports from consumers and health professionals to the TGA are voluntary, so there is under-reporting by these groups of adverse events related to therapeutic goods in Australia. This is the same around the world.

The scraped data is found in the data directory. These files are tab separated files which you can easily import in to a spreadsheet program. All of the files are only for COVID-19 vaccines.

  • DAEN_webscrape_simple.txt This file shows the date (twice for reasons that made sense at the time, but don't necessarily make sense anymore), the number of cases reported that day, the number of cases with a single suspected medicine for that day, and the number of deaths reported that day.
  • DAEN_webscrape_medsummary.txt This file gives a daily count of each adverse event category. Please note that if one patient had multiple adverse events, then each event would be counted in the appropriate category.
  • DAEN_webscrape_listofreports.txt This file provides the individual reports and includes sex and age (when recorded).

Figure 1 shows some of the basic information such as number of adverse events and deaths reported each day for the COVID-19 vaccines, myocarditis, pericarditis and the more general term cardiac disorder.

Figure 1 Figure 1.

Figure 2 shows a histogram of reported cases of myocarditis and pericarditis from the COVID-19 vaccine. Please note that the age group 10-19 is somewhat distorted as the age 10-11 should not receive the vaccine (although there are cases of 8 year olds getting the vaccine when that should not have occurred). This age group also has a significantly lower uptake than other age groups.

Figure 2 Figure 2.

Figures 3 and 4 plot the reports of myocarditis by age grouped by sex or manufacturer respectively. Figures 5 and 6 are the same for pericarditis. A '-' is used where an age was not given in the report.

Figure 3 Figure 3.

Figure 4 Figure 4.

Figure 5 Figure 5.

Figure 6 Figure 6.

Figure 7 shows how the histogram for myocarditis has progressed over time.

Figure 7
Figure 7.

Figure 8 shows the death rate of people in Australia who contracted COVID-19. Data taken from health.gov on 1/12/2021. Bottom graph is zoomed in to 1% to see what is happening with those under the age of 60.

Figure 8
Figure 8.

Using Data Science with Machine Learning techniques (ETL pipeline and ML pipeline) to classify received messages after disasters.

Using Data Science with Machine Learning techniques (ETL pipeline and ML pipeline) to classify received messages after disasters.

1 Feb 11, 2022
Bearsql allows you to query pandas dataframe with sql syntax.

Bearsql adds sql syntax on pandas dataframe. It uses duckdb to speedup the pandas processing and as the sql engine

14 Jun 22, 2022
Fast, flexible and easy to use probabilistic modelling in Python.

Please consider citing the JMLR-MLOSS Manuscript if you've used pomegranate in your academic work! pomegranate is a package for building probabilistic

Jacob Schreiber 3k Jan 02, 2023
Reading streams of Twitter data, save them to Kafka, then process with Kafka Stream API and Spark Streaming

Using Streaming Twitter Data with Kafka and Spark Reading streams of Twitter data, publishing them to Kafka topic, process message using Kafka Stream

Rustam Zokirov 1 Dec 06, 2021
A pipeline that creates consensus sequences from a Nanopore reads. I

A pipeline that creates consensus sequences from a Nanopore reads. It clusters reads that are similar to each other and creates a consensus that is then identified using BLAST.

Ada Madejska 2 May 15, 2022
Python Project on Pro Data Analysis Track

Udacity-BikeShare-Project: Python Project on Pro Data Analysis Track Basic Data Exploration with pandas on Bikeshare Data Basic Udacity project using

Belal Mohammed 0 Nov 10, 2021
Uses MIT/MEDSL, New York Times, and US Census datasources to analyze per-county COVID-19 deaths.

Covid County Executive summary Setup Install miniconda, then in the command line, run conda create -n covid-county conda activate covid-county conda i

Ahmed Fasih 1 Dec 22, 2021
Detecting Underwater Objects (DUO)

Underwater object detection for robot picking has attracted a lot of interest. However, it is still an unsolved problem due to several challenges. We take steps towards making it more realistic by ad

27 Dec 12, 2022
Python utility to extract differences between two pandas dataframes.

Python utility to extract differences between two pandas dataframes.

Jaime Valero 8 Jan 07, 2023
Aggregating gridded data (xarray) to polygons

A package to aggregate gridded data in xarray to polygons in geopandas using area-weighting from the relative area overlaps between pixels and polygons. Check out the binder link above for a sample c

Kevin Schwarzwald 42 Nov 09, 2022
Convert monolithic Jupyter notebooks into Ploomber pipelines.

Soorgeon Join our community | Newsletter | Contact us | Blog | Website | YouTube Convert monolithic Jupyter notebooks into Ploomber pipelines. soorgeo

Ploomber 65 Dec 16, 2022
Renato 214 Jan 02, 2023
Pandas and Dask test helper methods with beautiful error messages.

beavis Pandas and Dask test helper methods with beautiful error messages. test helpers These test helper methods are meant to be used in test suites.

Matthew Powers 18 Nov 28, 2022
Projeto para realizar o RPA Challenge . Utilizando Python e as bibliotecas Selenium e Pandas.

RPA Challenge in Python Projeto para realizar o RPA Challenge (www.rpachallenge.com), utilizando Python. O objetivo deste desafio é criar um fluxo de

Henrique A. Lourenço 1 Apr 12, 2022
Pipeline and Dataset helpers for complex algorithm evaluation.

tpcp - Tiny Pipelines for Complex Problems A generic way to build object-oriented datasets and algorithm pipelines and tools to evaluate them pip inst

Machine Learning and Data Analytics Lab FAU 3 Dec 07, 2022
ped-crash-techvol: Texas Ped Crash Tech Volume Pack

ped-crash-techvol: Texas Ped Crash Tech Volume Pack In conjunction with the Final Report "Identifying Risk Factors that Lead to Increase in Fatal Pede

Network Modeling Center; Center for Transportation Research; The University of Texas at Austin 2 Sep 28, 2022
Tokyo 2020 Paralympics, Analytics

Tokyo 2020 Paralympics, Analytics Thanks for checking out my app! It was built entirely using matplotlib and Tokyo 2020 Paralympics data. This applica

Petro Ivaniuk 1 Nov 18, 2021
Data Scientist in Simple Stock Analysis of PT Bukalapak.com Tbk for Long Term Investment

Data Scientist in Simple Stock Analysis of PT Bukalapak.com Tbk for Long Term Investment Brief explanation of PT Bukalapak.com Tbk Bukalapak was found

Najibulloh Asror 2 Feb 10, 2022
Python implementation of Principal Component Analysis

Principal Component Analysis Principal Component Analysis (PCA) is a dimension-reduction algorithm. The idea is to use the singular value decompositio

Ignacio Darago 1 Nov 06, 2021
Data collection, enhancement, and metrics calculation.

l3_data_collection Data collection, enhancement, and metrics calculation. Summary Repository containing code for QuantDAO's JDT data collection task.

Ruiwyn 3 Dec 23, 2022