We're Team Arson and we're using the power of predictive modeling to combat wildfires.

Overview

Logo We're Team Arson and we're using the power of predictive modeling to combat wildfires.

Arson Map

Inspiration

There’s been a lot of wildfires in California in recent years, and a lot of the most recent wildfires have been uncontained. The government does not have the capacity to deal with such a huge amount of wildfires so it has to pick and choose which fires to bring under control. This picking and choosing should be done based on wildfire and wind data in order to minimize the damage caused by wildfires We should also prioritize mitigating fires that can spread across many counties/ have a large chance of spreading further

What it does

Our project consists of a web app with an interactive map. We represent our wildfire as a MDP and determine how at risk counties are based on the fire location(s).

How we built it

We split the project into 2 main parts: web app and AI

Website

Artificial Intelligence

  • Represent the wildfire as a MDP (Markov Decision Process)
    • States: Counties
    • Actions: Traversing Counties
    • Probability distribution: generated from wind data
    • Transition Model: generated from wind data
    • Reward function: Uniform for every county burned (prone to change if scaled up)
  • Use bellman equation to iterate through counties and propagate the fire
    • Utility values ranging between 0 and 1 represent how at risk a county is
    • Screenshot
    • Run until utility values reach equilibrium or until 100 iterations are run
    • Gamma = 0.8
  • Represent the map as a graph
    • Counties are nodes
    • Wind speeds are edges
    • Assign each county with a risk (for reward function)
    • Spawn fires on specific counties

Challenges we ran into

Our project has a pretty large scope. We needed to develop a model and integrate it with a web app. This required extensive knowledge on AWS utilities and crisp communication between team members. The machine learning portion of this hackathon was difficult as we had to decide on what type of model to use for the wildfire and how to assign reward and utility values.

Accomplishments that we're proud of

We were able to integrate the web app with the model really quickly. This was surprising since usually connecting the pieces together will have a lot of bugs. It was also Austin, Raaj, and Romuz's first hackathons and this was a fairly complex project compared to a standard web app.

What we learned

This hackathon was a first for many of us. This was the first time any of us had implemented a machine learning model and connected it to a web app.

This was my first time at a hackathon and I couldn't have asked for better teammates than Jerry, Raaj, and Romuz. I learned so much over the last two days about machine learning, data science, React, and working as a team to help tackle some of California's greatest challenges. - Austin Rivard

As a first-year student, I have learned a lot of new skill sets while working with this team. I was happy to be a member of such an agile team. I learned numerous of new concepts, such as working with AWS, writing algorithms, and the graph data structures. - Romuz Abdulhamidov

What's next for Arson

  • Scale up to entire California to generate a better map during wildfire season
  • Generate more accurate Reward values for each county burned
  • Incorporate type 2 rewards based on R(state, action)
    • Wildfire gets bigger as it burns more land
    • Wildfire gets smaller in the presence of firefighters
  • Automatically train and deploy models by integrating real-time data for wind and wildfires

Demo

Screenshot

Owner
Jerry Lee
software engineer
Jerry Lee
Accurately separate the TLD from the registered domain and subdomains of a URL, using the Public Suffix List.

tldextract Python Module tldextract accurately separates the gTLD or ccTLD (generic or country code top-level domain) from the registered domain and s

John Kurkowski 1.6k Jan 03, 2023
Hangar is version control for tensor data. Commit, branch, merge, revert, and collaborate in the data-defined software era.

Overview docs tests package Hangar is version control for tensor data. Commit, branch, merge, revert, and collaborate in the data-defined software era

Tensorwerk 193 Nov 29, 2022
A Python module for clustering creators of social media content into networks

sm_content_clustering A Python module for clustering creators of social media content into networks. Currently supports identifying potential networks

72 Dec 30, 2022
PyTorch implementation for NCL (Neighborhood-enrighed Contrastive Learning)

NCL (Neighborhood-enrighed Contrastive Learning) This is the official PyTorch implementation for the paper: Zihan Lin*, Changxin Tian*, Yupeng Hou* Wa

RUCAIBox 73 Jan 03, 2023
Example Of Splunk Search Query With Python And Splunk Python SDK

SSQAuto (Splunk Search Query Automation) Example Of Splunk Search Query With Python And Splunk Python SDK installation: ➜ ~ git clone https://github.c

AmirHoseinTangsiriNET 1 Nov 14, 2021
A DSL for data-driven computational pipelines

"Dataflow variables are spectacularly expressive in concurrent programming" Henri E. Bal , Jennifer G. Steiner , Andrew S. Tanenbaum Quick overview Ne

1.9k Jan 03, 2023
Python Package for DataHerb: create, search, and load datasets.

The Python Package for DataHerb A DataHerb Core Service to Create and Load Datasets.

DataHerb 4 Feb 11, 2022
Data science/Analysis Health Care Portfolio

Health-Care-DS-Projects Data Science/Analysis Health Care Portfolio Consists Of 3 Projects: Mexico Covid-19 project, analyze the patient medical histo

Mohamed Abd El-Mohsen 1 Feb 13, 2022
Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities

Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities. This is aimed at those looking to get into the field of D

Joachim 1 Dec 26, 2021
peptides.py is a pure-Python package to compute common descriptors for protein sequences

peptides.py Physicochemical properties and indices for amino-acid sequences. 🗺️ Overview peptides.py is a pure-Python package to compute common descr

Martin Larralde 32 Dec 31, 2022
Common bioinformatics database construction

biodb Common bioinformatics database construction 1.taxonomy (Substance classification database) Download the database wget -c https://ftp.ncbi.nlm.ni

sy520 2 Jan 04, 2022
Used for data processing in machine learning, and help us to construct ML model more easily from scratch

Used for data processing in machine learning, and help us to construct ML model more easily from scratch. Can be used in linear model, logistic regression model, and decision tree.

ShawnWang 0 Jul 05, 2022
Extract data from a wide range of Internet sources into a pandas DataFrame.

pandas-datareader Up to date remote data access for pandas, works for multiple versions of pandas. Installation Install using pip pip install pandas-d

Python for Data 2.5k Jan 09, 2023
vartests is a Python library to perform some statistic tests to evaluate Value at Risk (VaR) Models

gg I wasn't satisfied with any of the other available Gemini clients, so I wrote my own. Requires Python 3.9 (maybe older, I haven't checked) and opti

RAFAEL RODRIGUES 5 Jan 03, 2023
Display the behaviour of a realtime program with a scope or logic analyser.

1. A monitor for realtime MicroPython code This library provides a means of examining the behaviour of a running system. It was initially designed to

Peter Hinch 17 Dec 05, 2022
A Python adaption of Augur to prioritize cell types in perturbation analysis.

A Python adaption of Augur to prioritize cell types in perturbation analysis.

Theis Lab 2 Mar 29, 2022
Efficient matrix representations for working with tabular data

Efficient matrix representations for working with tabular data

QuantCo 70 Dec 14, 2022
Analysiscsv.py for extracting analysis and exporting as CSV

wcc_analysis Lichess page documentation: https://lichess.org/page/world-championships Each WCC has a study, studies are fetched using: https://lichess

32 Apr 25, 2022
Semi-Automated Data Processing

Perform semi automated exploratory data analysis, feature engineering and feature selection on provided dataset by visualizing every possibilities on each step and assisting the user to make a meanin

Arun Singh Babal 1 Jan 17, 2022
Scraping and analysis of leetcode-compensations page.

Leetcode compensations report Scraping and analysis of leetcode-compensations page.

utsav 96 Jan 01, 2023