Full automated data pipeline using docker images

Overview

Create postgres tables from CSV files

This first section is only relate to creating tables from CSV files using postgres container alone. Just one of my experiments. If you interest, you can just follow these steps (only if your working environment support bash):

sh scripts/prep.sh

The prep.sh will handle everything for you by doing follwing:

# Start postgres db container
docker-compose -f postgres.yaml up -d
# Sleep to make sure the container is fully up running
sleep 3 

# I have problem with mouting csv files via docker compose, so here we go
# Copy csv and setup.sql to create required tables
docker cp ./csv/ my_postgres:
docker cp ./scripts/setup.sql my_postgres:setup.sql

# Execute the script in postgres db
docker exec -it my_postgres psql -p5432 --dbname=postgres --username=postgres --file=setup.sql 

# Shutdown the container
docker-compose -f postgres.yaml down --remove-orphans

I had problem with mount volumn that I can't mount the files under csv and scripts folders. Which still can be improved with a proper mount. But let's skip it for now to save time.

Initial Setup/Start Airflow container

This section will use a separate docker-compose.yaml than the above test. It will be relate due to the fact that we want to use airflow to schedule the tasks above (create table and load data). To do so, do the following. First prepare folders. You can call a new folder specifically for this if you want.

# (optional) mkdir airflow && cd airflow
mkdir ./dags ./logs ./plugins

Next we need the airflow docker-compose.yaml in our airflow directory

curl -O https://airflow.apache.org/docs/apache-airflow/stable/docker-compose.yaml

Next make sure we will have a proper permission to initial Airflow

.env ">
echo -e "AIRFLOW_UID=$(id -u)\nAIRFLOW_GID=0" > .env

Then we must initial Airflow instance

docker-compose up airflow-init

Wait until the initial finished then (you can use -d to detach if you want)

docker-compose up

Now you will be able to connect to Airflow GUI via http://localhost:8080/

Create Airflow DAG task

First thing, you need to setup connection for postgres database. Go to tab Admin > Connection > +, wow you have to fill details of the connection:

Connection Id: postgres_default
Connection Type: 'Postgres'
Host: 
   
    
Schema: postgres (default)
Login: 
    
     
Password: 
     
      
Port: 
      

      
     
    
   

Click "Test" button to check your connection then save. Now click at the Airflow icon to return to home page. You should see task name "create_postgres_tables". Try to run by clicking start button select "Trigger DAG".

You might also like...
In this project, ETL pipeline is build on data warehouse hosted on AWS Redshift.

ETL Pipeline for AWS Project Description In this project, ETL pipeline is build on data warehouse hosted on AWS Redshift. The data is loaded from S3 t

Demonstrate a Dataflow pipeline that saves data from an API into BigQuery table

Overview dataflow-mvp provides a basic example pipeline that pulls data from an API and writes it to a BigQuery table using GCP's Dataflow (i.e., Apac

X-news - Pipeline data use scrapy, kafka, spark streaming, spark ML and elasticsearch, Kibana

X-news - Pipeline data use scrapy, kafka, spark streaming, spark ML and elasticsearch, Kibana

An ETL Pipeline of a large data set from a fictitious music streaming service named Sparkify.

An ETL Pipeline of a large data set from a fictitious music streaming service named Sparkify. The ETL process flows from AWS's S3 into staging tables in AWS Redshift.

Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities

Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities. This is aimed at those looking to get into the field of Data Science or those who are already in the field and looking to solve a real-world project with python.

Flenser is a simple, minimal, automated exploratory data analysis tool.

Flenser Have you ever been handed a dataset you've never seen before? Flenser is a simple, minimal, automated exploratory data analysis tool. It runs

Lale is a Python library for semi-automated data science.
Lale is a Python library for semi-automated data science.

Lale is a Python library for semi-automated data science. Lale makes it easy to automatically select algorithms and tune hyperparameters of pipelines that are compatible with scikit-learn, in a type-safe fashion.

Data Competition: automated systems that can detect whether people are not wearing masks or are wearing masks incorrectly
Data Competition: automated systems that can detect whether people are not wearing masks or are wearing masks incorrectly

Table of contents Introduction Dataset Model & Metrics How to Run Quickstart Install Training Evaluation Detection DATA COMPETITION The COVID-19 pande

Pipeline and Dataset helpers for complex algorithm evaluation.

tpcp - Tiny Pipelines for Complex Problems A generic way to build object-oriented datasets and algorithm pipelines and tools to evaluate them pip inst

Releases(airflow-postgres-dag)
Option Pricing Calculator using the Binomial Pricing Method (No Libraries Required)

Binomial Option Pricing Calculator Option Pricing Calculator using the Binomial Pricing Method (No Libraries Required) Background A derivative is a fi

sammuhrai 1 Nov 29, 2021
A real data analysis and modeling project - restaurant inspections

A real data analysis and modeling project - restaurant inspections Jafar Pourbemany 9/27/2021 This project represents data analysis and modeling of re

Jafar Pourbemany 2 Aug 21, 2022
Churn prediction with PySpark

It is expected to develop a machine learning model that can predict customers who will leave the company.

3 Aug 13, 2021
MDAnalysis is a Python library to analyze molecular dynamics simulations.

MDAnalysis Repository README [*] MDAnalysis is a Python library for the analysis of computer simulations of many-body systems at the molecular scale,

MDAnalysis 933 Dec 28, 2022
Py-price-monitoring - A Python price monitor

A Python price monitor This project was focused on Brazil, so the monitoring is

Samuel 1 Jan 04, 2022
WithPipe is a simple utility for functional piping in Python.

A utility for functional piping in Python that allows you to access any function in any scope as a partial.

Michael Milton 1 Oct 26, 2021
Performance analysis of predictive (alpha) stock factors

Alphalens Alphalens is a Python Library for performance analysis of predictive (alpha) stock factors. Alphalens works great with the Zipline open sour

Quantopian, Inc. 2.5k Jan 09, 2023
This mini project showcase how to build and debug Apache Spark application using Python

Spark app can't be debugged using normal procedure. This mini project showcase how to build and debug Apache Spark application using Python programming language. There are also options to run Spark a

Denny Imanuel 1 Dec 29, 2021
This tool parses log data and allows to define analysis pipelines for anomaly detection.

logdata-anomaly-miner This tool parses log data and allows to define analysis pipelines for anomaly detection. It was designed to run the analysis wit

AECID 32 Nov 27, 2022
Parses data out of your Google Takeout (History, Activity, Youtube, Locations, etc...)

google_takeout_parser parses both the Historical HTML and new JSON format for Google Takeouts caches individual takeout results behind cachew merge mu

Sean Breckenridge 27 Dec 28, 2022
This repo contains a simple but effective tool made using python which can be used for quality control in statistical approach.

This repo contains a powerful tool made using python which is used to visualize, analyse and finally assess the quality of the product depending upon the given observations

SasiVatsal 8 Oct 18, 2022
Describing statistical models in Python using symbolic formulas

Patsy is a Python library for describing statistical models (especially linear models, or models that have a linear component) and building design mat

Python for Data 866 Dec 16, 2022
Autopsy Module to analyze Registry Hives based on bookmarks provided by EricZimmerman for his tool RegistryExplorer

Autopsy Module to analyze Registry Hives based on bookmarks provided by EricZimmerman for his tool RegistryExplorer

Mohammed Hassan 13 Mar 31, 2022
DenseClus is a Python module for clustering mixed type data using UMAP and HDBSCAN

DenseClus is a Python module for clustering mixed type data using UMAP and HDBSCAN. Allowing for both categorical and numerical data, DenseClus makes it possible to incorporate all features in cluste

Amazon Web Services - Labs 53 Dec 08, 2022
Used for data processing in machine learning, and help us to construct ML model more easily from scratch

Used for data processing in machine learning, and help us to construct ML model more easily from scratch. Can be used in linear model, logistic regression model, and decision tree.

ShawnWang 0 Jul 05, 2022
[CVPR2022] This repository contains code for the paper "Nested Collaborative Learning for Long-Tailed Visual Recognition", published at CVPR 2022

Nested Collaborative Learning for Long-Tailed Visual Recognition This repository is the official PyTorch implementation of the paper in CVPR 2022: Nes

Jun Li 65 Dec 09, 2022
A Python Tools to imaging the shallow seismic structure

ShallowSeismicImaging Tools to imaging the shallow seismic structure, above 10 km, based on the ZH ratio measured from the ambient seismic noise, and

Xiao Xiao 9 Aug 09, 2022
Processo de ETL (extração, transformação, carregamento) realizado pela equipe no projeto final do curso da Soul Code Academy.

Processo de ETL (extração, transformação, carregamento) realizado pela equipe no projeto final do curso da Soul Code Academy.

Débora Mendes de Azevedo 1 Feb 03, 2022
Top 50 best selling books on amazon

It's a dashboard that shows the detailed information about each book in the top 50 best selling books on amazon over the last ten years

Nahla Tarek 1 Nov 18, 2021
Package for decomposing EMG signals into motor unit firings, as used in Formento et al 2021.

EMGDecomp Package for decomposing EMG signals into motor unit firings, created for Formento et al 2021. Based heavily on Negro et al, 2016. Supports G

13 Nov 01, 2022