Consistency Regularization for Adversarial Robustness

Overview

Consistency Regularization for Adversarial Robustness

Official PyTorch implementation of Consistency Regularization for Adversarial Robustness by Jihoon Tack, Sihyun Yu, Jongheon Jeong, Minseon Kim, Sung Ju Hwang, and Jinwoo Shin.

1. Dependencies

conda create -n con-adv python=3
conda activate con-adv

conda install pytorch torchvision cudatoolkit=11.0 -c pytorch 

pip install git+https://github.com/fra31/auto-attack
pip install advertorch tensorboardX

2. Training

2.1. Training option and description

The option for the training method is as follows:

  • <DATASET>: {cifar10,cifar100,tinyimagenet}
  • <AUGMENT>: {base,ccg}
  • <ADV_TRAIN OPTION>: {adv_train,adv_trades,adv_mart}

Current code are assuming l_infinity constraint adversarial training and PreAct-ResNet-18 as a base model.
To change the option, simply modify the following configurations:

  • WideResNet-34-10: --model wrn3410
  • l_2 constraint: --distance L2

2.2. Training code

Standard cross-entropy training

% Standard cross-entropy
python train.py --mode ce --augment base --dataset <DATASET>

Adversarial training

% Adversarial training
python train.py --mode <ADV_TRAIN OPTION> --augment <AUGMENT> --dataset <DATASET>

% Example: Standard AT under CIFAR-10
python train.py --mode adv_train --augment base --dataset cifar10

Consistency regularization

% Consistency regularization
python train.py --consistency --mode <ADV_TRAIN OPTION> --augment <AUGMENT> --dataset <DATASET>

% Example: Consistency regularization based on standard AT under CIFAR-10
python train.py --consistency --mode adv_train --augment ccg --dataset cifar10 

3. Evaluation

3.1. Evaluation option and description

The description for treat model is as follows:

  • <DISTANCE>: {Linf,L2,L1}, the norm constraint type
  • <EPSILON>: the epsilon ball size
  • <ALPHA>: the step size of PGD optimization
  • <NUM_ITER>: iteration number of PGD optimization

3.2. Evaluation code

Evaluate clean accuracy

python eval.py --mode test_clean_acc --dataset <DATASET> --load_path <MODEL_PATH>

Evaluate clean & robust accuracy against PGD

python eval.py --mode test_adv_acc --distance <DISTANCE> --epsilon <EPSILON> --alpha <ALPHA> --n_iters <NUM_ITER> --dataset <DATASET> --load_path <MODEL_PATH>

Evaluate clean & robust accuracy against AutoAttack

python eval.py --mode test_auto_attack --epsilon <EPSILON> --distance <DISTANCE> --dataset <DATASET> --load_path <MODEL_PATH>

Evaluate mean corruption error (mCE)

python eval.py --mode test_mce --dataset <DATASET> --load_path <MODEL_PATH>

4. Results

White box attack

Clean accuracy and robust accuracy (%) against white-box attacks on PreAct-ResNet-18 trained on CIFAR-10.
We use l_infinity threat model with epsilon = 8/255.

Method Clean PGD-20 PGD-100 AutoAttack
Standard AT 84.48 46.09 45.89 40.74
+ Consistency (Ours) 84.65 54.86 54.67 47.83
TRADES 81.35 51.41 51.13 46.41
+ Consistency (Ours) 81.10 54.86 54.68 48.30
MART 81.35 49.60 49.41 41.89
+ Consistency (Ours) 81.10 55.31 55.16 47.02

Unseen adversaries

Robust accuracy (%) of PreAct-ResNet-18 trained with of l_infinity epsilon = 8/255 constraint against unseen attacks.
For unseen attacks, we use PGD-100 under different sized l_infinity epsilon balls, and other types of norm balls.

Method l_infinity, eps=16/255 l_2, eps=300/255 l_1, eps=4000/255
Standard AT 15.77 26.91 32.44
+ Consistency (Ours) 22.49 34.43 42.45
TRADES 23.87 28.31 28.64
+ Consistency (Ours) 27.18 37.11 46.73
MART 20.08 30.15 27.00
+ Consistency (Ours) 27.91 38.10 43.29

Mean corruption error

Mean corruption error (mCE) (%) of PreAct-ResNet-18 trained on CIFAR-10, and tested with CIFAR-10-C dataset

Method mCE
Standard AT 24.05
+ Consistency (Ours) 22.06
TRADES 26.17
+ Consistency (Ours) 24.05
MART 27.75
+ Consistency (Ours) 26.75

Reference

Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data 🌈

Rainbow 🌈 An implementation of Rainbow DQN which outperforms the paper's (Hessel et al. 2017) results on 40% of tested games while using 20x less dat

Dominik Schmidt 31 Dec 21, 2022
FedML: A Research Library and Benchmark for Federated Machine Learning

FedML: A Research Library and Benchmark for Federated Machine Learning 📄 https://arxiv.org/abs/2007.13518 News 2021-02-01 (Award): #NeurIPS 2020# Fed

FedML-AI 2.3k Jan 08, 2023
Official Pytorch implementation of the paper "Action-Conditioned 3D Human Motion Synthesis with Transformer VAE", ICCV 2021

ACTOR Official Pytorch implementation of the paper "Action-Conditioned 3D Human Motion Synthesis with Transformer VAE", ICCV 2021. Please visit our we

Mathis Petrovich 248 Dec 23, 2022
An executor that performs image segmentation on fashion items

ClothingSegmenter U2NET fashion image/clothing segmenter based on https://github.com/levindabhi/cloth-segmentation Overview The ClothingSegmenter exec

Jina AI 5 Mar 30, 2022
Clockwork Convnets for Video Semantic Segmentation

Clockwork Convnets for Video Semantic Segmentation This is the reference implementation of arxiv:1608.03609: Clockwork Convnets for Video Semantic Seg

Evan Shelhamer 141 Nov 21, 2022
A model which classifies reviews as positive or negative.

SentiMent Analysis In this project I built a model to classify movie reviews fromn the IMDB dataset of 50K reviews. WordtoVec : Neural networks only w

Rishabh Bali 2 Feb 09, 2022
Tool for installing and updating MiSTer cores and other files

MiSTer Downloader This tool installs and updates all the cores and other extra files for your MiSTer. It also updates the menu core, the MiSTer firmwa

72 Dec 24, 2022
PyTorch implementation of SwAV (Swapping Assignments between Views)

Unsupervised Learning of Visual Features by Contrasting Cluster Assignments This code provides a PyTorch implementation and pretrained models for SwAV

Meta Research 1.7k Jan 04, 2023
Fast and Context-Aware Framework for Space-Time Video Super-Resolution (VCIP 2021)

Fast and Context-Aware Framework for Space-Time Video Super-Resolution Preparation Dependencies PyTorch 1.2.0 CUDA 10.0 DCNv2 cd model/DCNv2 bash make

Xueheng Zhang 1 Mar 29, 2022
Introduction to AI assignment 1 HCM University of Technology, term 211

Sokoban Bot Introduction to AI assignment 1 HCM University of Technology, term 211 Abstract This is basically a solver for Sokoban game using Breadth-

Quang Minh 4 Dec 12, 2022
UV matrix decompostion using movielens dataset

UV-matrix-decompostion-with-kfold UV matrix decompostion using movielens dataset upload the 'ratings.dat' file install the following python libraries

2 Oct 18, 2022
Automatic tool focused on deriving metallicities of open clusters

metalcode Automatic tool focused on deriving metallicities of open clusters. Based on the method described in Pöhnl & Paunzen (2010, https://ui.adsabs

2 Dec 13, 2021
The code of “Similarity Reasoning and Filtration for Image-Text Matching” [AAAI2021]

SGRAF PyTorch implementation for AAAI2021 paper of “Similarity Reasoning and Filtration for Image-Text Matching”. It is built on top of the SCAN and C

Ronnie_IIAU 149 Dec 22, 2022
Semantic Segmentation with Pytorch-Lightning

This is a simple demo for performing semantic segmentation on the Kitti dataset using Pytorch-Lightning and optimizing the neural network by monitoring and comparing runs with Weights & Biases.

Boris Dayma 58 Nov 18, 2022
This repository contains a pytorch implementation of "StereoPIFu: Depth Aware Clothed Human Digitization via Stereo Vision".

StereoPIFu: Depth Aware Clothed Human Digitization via Stereo Vision | Project Page | Paper | This repository contains a pytorch implementation of "St

87 Dec 09, 2022
Generate pixel-style avatars with python.

face2pixel Generate pixel-style avatars with python. Run: Clone the project: git clone https://github.com/theodorecooper/face2pixel install requiremen

Theodore Cooper 2 May 11, 2022
A TensorFlow implementation of FCN-8s

FCN-8s implementation in TensorFlow Contents Overview Examples and demo video Dependencies How to use it Download pre-trained VGG-16 Overview This is

Pierluigi Ferrari 50 Aug 08, 2022
Automatic meme generation model using Tensorflow Keras.

Memefly You can find the project at MemeflyAI. Contributors Nick Buukhalter Harsh Desai Han Lee Project Overview Trello Board Product Canvas Automatic

BloomTech Labs 2 Jan 13, 2022
Code for paper Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting

Decoupled Spatial-Temporal Graph Neural Networks Code for our paper: Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting.

S22 43 Jan 04, 2023
Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk

Annoy Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given quer

Spotify 10.6k Jan 04, 2023