CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)

Overview

CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021)

This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm (CN) and SelfNorm (SN), two simple, effective, and complementary normalization techniques to improve generalization robustness under distribution shifts.

@article{tang2021cnsn,
  title={CrossNorm and SelfNorm for Generalization under Distribution Shifts},
  author={Zhiqiang Tang, Yunhe Gao, Yi Zhu, Zhi Zhang, Mu Li, Dimitris Metaxas},
  journal={arXiv preprint arXiv:2102.02811},
  year={2021}
}

Install dependencies

conda create --name cnsn python=3.7
conda activate cnsn
conda install numpy
conda install pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=10.0 -c pytorch

Prepare datasets

  • Download CIFAR-10-C and CIFAR-100-C datasets with:

    mkdir -p ./data
    curl -O https://zenodo.org/record/2535967/files/CIFAR-10-C.tar
    curl -O https://zenodo.org/record/3555552/files/CIFAR-100-C.tar
    tar -xvf CIFAR-100-C.tar -C data/
    tar -xvf CIFAR-10-C.tar -C data/
    
  • Download ImageNet-C with:

    mkdir -p ./data/ImageNet-C
    curl -O https://zenodo.org/record/2235448/files/blur.tar
    curl -O https://zenodo.org/record/2235448/files/digital.tar
    curl -O https://zenodo.org/record/2235448/files/noise.tar
    curl -O https://zenodo.org/record/2235448/files/weather.tar
    tar -xvf blur.tar -C data/ImageNet-C
    tar -xvf digital.tar -C data/ImageNet-C
    tar -xvf noise.tar -C data/ImageNet-C
    tar -xvf weather.tar -C data/ImageNet-C
    

Usage

We have included sample scripts in cifar10-scripts, cifar100-scripts, and imagenet-scripts. For example, there are 5 scripts for CIFAR-100 and WideResNet:

  1. ./cifar100-scripts/wideresnet/run-cn.sh

  2. ./cifar100-scripts/wideresnet/run-sn.sh

  3. ./cifar100-scripts/wideresnet/run-cnsn.sh

  4. ./cifar100-scripts/wideresnet/run-cnsn-consist.sh (Use CNSN with JSD consistency regularization)

  5. ./cifar100-scripts/wideresnet/run-cnsn-augmix.sh (Use CNSN with AugMix)

Pretrained models

  • Pretrained ResNet-50 ImageNet classifiers are available:
  1. ResNet-50 + CN
  2. ResNet-50 + SN
  3. ResNet-50 + CNSN
  4. ResNet-50 + CNSN + IBN + AugMix.
  • Results of the above 4 ResNet-50 models on ImageNet:
+CN +SN +CNSN +CNSN+IBN+AugMix
Top-1 err 23.3 23.7 23.3 22.3
mCE 75.1 73.8 69.7 62.8
Code for testing various M1 Chip benchmarks with TensorFlow.

M1, M1 Pro, M1 Max Machine Learning Speed Test Comparison This repo contains some sample code to benchmark the new M1 MacBooks (M1 Pro and M1 Max) aga

Daniel Bourke 348 Jan 04, 2023
Image Deblurring using Generative Adversarial Networks

DeblurGAN arXiv Paper Version Pytorch implementation of the paper DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks. Our netwo

Orest Kupyn 2.2k Jan 01, 2023
A tutorial on DataFrames.jl prepared for JuliaCon2021

JuliaCon2021 DataFrames.jl Tutorial This is a tutorial on DataFrames.jl prepared for JuliaCon2021. A video recording of the tutorial is available here

Bogumił Kamiński 106 Jan 09, 2023
Official code for "EagerMOT: 3D Multi-Object Tracking via Sensor Fusion" [ICRA 2021]

EagerMOT: 3D Multi-Object Tracking via Sensor Fusion Read our ICRA 2021 paper here. Check out the 3 minute video for the quick intro or the full prese

Aleksandr Kim 276 Dec 30, 2022
TANL: Structured Prediction as Translation between Augmented Natural Languages

TANL: Structured Prediction as Translation between Augmented Natural Languages Code for the paper "Structured Prediction as Translation between Augmen

98 Dec 15, 2022
LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

donglee 279 Dec 13, 2022
Direct Multi-view Multi-person 3D Human Pose Estimation

Implementation of NeurIPS-2021 paper: Direct Multi-view Multi-person 3D Human Pose Estimation [paper] [video-YouTube, video-Bilibili] [slides] This is

Sea AI Lab 251 Dec 30, 2022
Unofficial PyTorch Implementation of Multi-Singer

Multi-Singer Unofficial PyTorch Implementation of Multi-Singer: Fast Multi-Singer Singing Voice Vocoder With A Large-Scale Corpus. Requirements See re

SunMail-hub 123 Dec 28, 2022
Y. Zhang, Q. Yao, W. Dai, L. Chen. AutoSF: Searching Scoring Functions for Knowledge Graph Embedding. IEEE International Conference on Data Engineering (ICDE). 2020

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

AutoML Research 64 Dec 17, 2022
📚 Papermill is a tool for parameterizing, executing, and analyzing Jupyter Notebooks.

papermill is a tool for parameterizing, executing, and analyzing Jupyter Notebooks. Papermill lets you: parameterize notebooks execute notebooks This

nteract 5.1k Jan 03, 2023
A Human-in-the-Loop workflow for creating HD images from text

A Human-in-the-Loop? workflow for creating HD images from text DALL·E Flow is an interactive workflow for generating high-definition images from text

Jina AI 2.5k Jan 02, 2023
Examples of using f2py to get high-speed Fortran integrated with Python easily

f2py Examples Simple examples of using f2py to get high-speed Fortran integrated with Python easily. These examples are also useful to troubleshoot pr

Michael 35 Aug 21, 2022
Neural network pruning for finding a sparse computational model for controlling a biological motor task.

MothPruning Scientific Overview Originally inspired by biological nervous systems, deep neural networks (DNNs) are powerful computational tools for mo

Olivia Thomas 0 Dec 14, 2022
SARS-Cov-2 Recombinant Finder for fasta sequences

Sc2rf - SARS-Cov-2 Recombinant Finder Pronounced: Scarf What's this? Sc2rf can search genome sequences of SARS-CoV-2 for potential recombinants - new

Lena Schimmel 41 Oct 03, 2022
CSD: Consistency-based Semi-supervised learning for object Detection

CSD: Consistency-based Semi-supervised learning for object Detection (NeurIPS 2019) By Jisoo Jeong, Seungeui Lee, Jee-soo Kim, Nojun Kwak Installation

80 Dec 15, 2022
Unofficial PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution

PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution [arXiv 2021].

Christoph Reich 122 Dec 12, 2022
Official code for 'Robust Siamese Object Tracking for Unmanned Aerial Manipulator' and offical introduction to UAMT100 benchmark

SiamSA: Robust Siamese Object Tracking for Unmanned Aerial Manipulator Demo video 📹 Our video on Youtube and bilibili demonstrates the evaluation of

Intelligent Vision for Robotics in Complex Environment 12 Dec 18, 2022
OSLO: Open Source framework for Large-scale transformer Optimization

O S L O Open Source framework for Large-scale transformer Optimization What's New: December 21, 2021 Released OSLO 1.0. What is OSLO about? OSLO is a

TUNiB 280 Nov 24, 2022
A collection of awesome resources image-to-image translation.

awesome image-to-image translation A collection of resources on image-to-image translation. Contributing If you think I have missed out on something (

876 Dec 28, 2022
MQBench Quantization Aware Training with PyTorch

MQBench Quantization Aware Training with PyTorch I am using MQBench(Model Quantization Benchmark)(http://mqbench.tech/) to quantize the model for depl

Ling Zhang 29 Nov 18, 2022