Pre-trained NFNets with 99% of the accuracy of the official paper

Overview

NFNet Pytorch Implementation

This repo contains pretrained NFNet models F0-F6 with high ImageNet accuracy from the paper High-Performance Large-Scale Image Recognition Without Normalization. The small models are as accurate as an EfficientNet-B7, but train 8.7 times faster. The large models set a new SOTA top-1 accuracy on ImageNet.

NFNet F0 F1 F2 F3 F4 F5 F6+SAM
Top-1 accuracy Brock et al. 83.6 84.7 85.1 85.7 85.9 86.0 86.5
Top-1 accuracy this implementation 82.82 84.63 84.90 85.46 85.66 85.62 TBD

All credits go to the authors of the original paper. This repo is heavily inspired by their nice JAX implementation in the official repository. Visit their repo for citing.

Get started

git clone https://github.com/benjs/nfnets_pytorch.git
pip3 install -r requirements.txt

Download pretrained weights from the official repository and place them in the pretrained folder.

from pretrained import pretrained_nfnet
model_F0 = pretrained_nfnet('pretrained/F0_haiku.npz')
model_F1 = pretrained_nfnet('pretrained/F1_haiku.npz')
# ...

The model variant is automatically derived from the parameter count in the pretrained weights file.

Validate yourself

python3 eval.py --pretrained pretrained/F0_haiku.npz --dataset path/to/imagenet/valset/

You can download the ImageNet validation set from the ILSVRC2012 challenge site after asking for access with, for instance, your .edu mail address.

Scaled weight standardization convolutions in your own model

Simply replace all your nn.Conv2d with WSConv2D and all your nn.ReLU with VPReLU or VPGELU (variance preserving ReLU/GELU).

import torch.nn as nn
from model import WSConv2D, VPReLU, VPGELU

# Simply replace your nn.Conv2d layers
class MyNet(nn.Module):
    def __init__(self):
        super(MyNet, self).__init__()
 
        self.activation = VPReLU(inplace=True) # or VPGELU
        self.conv0 = WSConv2D(in_channels=128, out_channels=256, kernel_size=1, ...)
        # ...

    def forward(self, x):
      out = self.activation(self.conv0(x))
      # ...

SGD with adaptive gradient clipping in your own model

Simply replace your SGD optimizer with SGD_AGC.

from optim import SGD_AGC

optimizer = SGD_AGC(
        named_params=model.named_parameters(), # Pass named parameters
        lr=1e-3,
        momentum=0.9,
        clipping=0.1, # New clipping parameter
        weight_decay=2e-5, 
        nesterov=True)

It is important to exclude certain layers from clipping or momentum. The authors recommends to exclude the last fully convolutional from clipping and the bias/gain parameters from weight decay:

import re

for group in optimizer.param_groups:
    name = group['name'] 
    
    # Exclude from weight decay
    if len(re.findall('stem.*(bias|gain)|conv.*(bias|gain)|skip_gain', name)) > 0:
        group['weight_decay'] = 0

    # Exclude from clipping
    if name.startswith('linear'):
        group['clipping'] = None

Train your own NFNet

Adjust your desired parameters in default_config.yaml and start training.

python3 train.py --dataset /path/to/imagenet/

There is still some parts missing for complete training from scratch:

  • Multi-GPU training
  • Data augmentations
  • FP16 activations and gradients

Contribute

The implementation is still in an early stage in terms of usability / testing. If you have an idea to improve this repo open an issue, start a discussion or submit a pull request.

Development status

  • Pre-trained NFNet Models
    • F0-F5
    • F6+SAM
    • Scaled weight standardization
    • Squeeze and excite
    • Stochastic depth
    • FP16 activations
  • SGD with unit adaptive gradient clipping (SGD-AGC)
    • Exclude certain layers from weight-decay, clipping
    • FP16 gradients
  • PyPI package
  • PyTorch hub submission
  • Label smoothing loss from Szegedy et al.
  • Training on ImageNet
  • Pre-trained weights
  • Tensorboard support
  • general usability improvements
  • Multi-GPU support
  • Data augmentation
  • Signal propagation plots (from first paper)
Comments
  • ModuleNotFoundError: No module named 'haiku'

    ModuleNotFoundError: No module named 'haiku'

    when i try "python3 eval.py --pretrained pretrained/F0_haiku.npz --dataset ***" i got this error, have you ever met this error? how to fix this?

    opened by Rianusr 2
  • Trained without data augmentation?

    Trained without data augmentation?

    Thanks for the great work on the pytorch implementation of NFNet! The accuracies achieved by this implementation are pretty impressive also and I am wondering if these training results were simply derived from the training script, that is, without data augmentation.

    opened by nandi-zhang 2
  • from_pretrained_haiku

    from_pretrained_haiku

    https://github.com/benjs/nfnets_pytorch/blob/7b4d1cc701c7de4ee273ded01ce21cbdb1e60c48/nfnets/pretrained.py#L90

    model = from_pretrained_haiku(args.pretrained)

    where is 'from_pretrained_haiku' method?

    opened by vkmavani 0
  • About WSconv2d

    About WSconv2d

    I see the authoe's code, I find his WSconv2d pad_mod is 'same'. Pytorch's conv2d dono't have pad_mode, and I think your padding should greater 0, but I find your padding always be 0. I want to know why?

    I see you train.py your learning rate is constant, why? Thank you!

    opened by fancyshun 3
  • AveragePool

    AveragePool

    Hi, noticed that the AveragePool ('pool' layer) is not used in forward function. Instead, forward uses torch.mean. Removing the layer doesn't change pooling behavior. I tried using this model as a feature extractor and was a bit confused for a moment.

    opened by bogdankjastrzebski 1
Releases(v0.0.1)
Owner
Benjamin Schmidt
Engineering Student
Benjamin Schmidt
GitHub repository for "Improving Video Generation for Multi-functional Applications"

Improving Video Generation for Multi-functional Applications GitHub repository for "Improving Video Generation for Multi-functional Applications" Pape

Bernhard Kratzwald 328 Dec 07, 2022
Official code of the paper "Expanding Low-Density Latent Regions for Open-Set Object Detection" (CVPR 2022)

OpenDet Expanding Low-Density Latent Regions for Open-Set Object Detection (CVPR2022) Jiaming Han, Yuqiang Ren, Jian Ding, Xingjia Pan, Ke Yan, Gui-So

csuhan 64 Jan 07, 2023
The codes and models in 'Gaze Estimation using Transformer'.

GazeTR We provide the code of GazeTR-Hybrid in "Gaze Estimation using Transformer". We recommend you to use data processing codes provided in GazeHub.

65 Dec 27, 2022
A Distributional Approach To Controlled Text Generation

A Distributional Approach To Controlled Text Generation This is the repository code for the ICLR 2021 paper "A Distributional Approach to Controlled T

NAVER 102 Jan 07, 2023
Office source code of paper UniFuse: Unidirectional Fusion for 360$^\circ$ Panorama Depth Estimation

UniFuse (RAL+ICRA2021) Office source code of paper UniFuse: Unidirectional Fusion for 360$^\circ$ Panorama Depth Estimation, arXiv, Demo Preparation I

Alibaba 47 Dec 26, 2022
PyTorch code for training MM-DistillNet for multimodal knowledge distillation

There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge MM-DistillNet is a

51 Dec 20, 2022
Robot Servers and Server Manager software for robo-gym

robo-gym-server-modules Robot Servers and Server Manager software for robo-gym. For info on how to use this package please visit the robo-gym website

JR ROBOTICS 4 Aug 16, 2021
A Python script that creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editing software such as FinalCut Pro for further adjustments.

Text to Subtitles - Python This python file creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editin

Dmytro North 9 Dec 24, 2022
[CVPR2021 Oral] End-to-End Video Instance Segmentation with Transformers

VisTR: End-to-End Video Instance Segmentation with Transformers This is the official implementation of the VisTR paper: Installation We provide instru

Yuqing Wang 687 Jan 07, 2023
Robust fine-tuning of zero-shot models

Robust fine-tuning of zero-shot models This repository contains code for the paper Robust fine-tuning of zero-shot models by Mitchell Wortsman*, Gabri

224 Dec 29, 2022
GEP (GDB Enhanced Prompt) - a GDB plug-in for GDB command prompt with fzf history search, fish-like autosuggestions, auto-completion with floating window, partial string matching in history, and more!

GEP (GDB Enhanced Prompt) GEP (GDB Enhanced Prompt) is a GDB plug-in which make your GDB command prompt more convenient and flexibility. Why I need th

Alan Li 23 Dec 21, 2022
Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Intelligent Robotics and Machine Vision Lab 4 Jul 19, 2022
This repository implements variational graph auto encoder by Thomas Kipf.

Variational Graph Auto-encoder in Pytorch This repository implements variational graph auto-encoder by Thomas Kipf. For details of the model, refer to

DaehanKim 215 Jan 02, 2023
Ppq - A powerful offline neural network quantization tool with custimized IR

PPL Quantization Tool(PPL 量化工具) PPL Quantization Tool (PPQ) is a powerful offlin

605 Jan 03, 2023
This code is the implementation of the paper "Coherence-Based Distributed Document Representation Learning for Scientific Documents".

Introduction This code is the implementation of the paper "Coherence-Based Distributed Document Representation Learning for Scientific Documents". If

tsc 0 Jan 11, 2022
Replication package for the manuscript "Using Personality Detection Tools for Software Engineering Research: How Far Can We Go?" submitted to TOSEM

tosem2021-personality-rep-package Replication package for the manuscript "Using Personality Detection Tools for Software Engineering Research: How Far

Collaborative Development Group 1 Dec 13, 2021
Code for "Adversarial Attack Generation Empowered by Min-Max Optimization", NeurIPS 2021

Min-Max Adversarial Attacks [Paper] [arXiv] [Video] [Slide] Adversarial Attack Generation Empowered by Min-Max Optimization Jingkang Wang, Tianyun Zha

Jingkang Wang 12 Nov 23, 2022
SimBERT升级版(SimBERTv2)!

RoFormer-Sim RoFormer-Sim,又称SimBERTv2,是我们之前发布的SimBERT模型的升级版。 介绍 https://kexue.fm/archives/8454 训练 tensorflow 1.14 + keras 2.3.1 + bert4keras 0.10.6 下载

318 Dec 31, 2022
Python package for covariance matrices manipulation and Biosignal classification with application in Brain Computer interface

pyRiemann pyRiemann is a python package for covariance matrices manipulation and classification through Riemannian geometry. The primary target is cla

447 Jan 05, 2023
Fast Axiomatic Attribution for Neural Networks (NeurIPS*2021)

Fast Axiomatic Attribution for Neural Networks This is the official repository accompanying the NeurIPS 2021 paper: R. Hesse, S. Schaub-Meyer, and S.

Visual Inference Lab @TU Darmstadt 11 Nov 21, 2022