Conjugated Discrete Distributions for Distributional Reinforcement Learning (C2D)

Related tags

Deep Learningc2d
Overview

Conjugated Discrete Distributions for Distributional Reinforcement Learning (C2D)

Code & Data Appendix for Conjugated Discrete Distributions for Distributional Reinforcement Learning.

Björn Lindenberg, Jonas Nordqvist, Karl-Olof Lindahl

Citation

If you use C2D in your research we ask you to please cite the following:

@misc{lindenberg2021conjugated,
      title={Conjugated Discrete Distributions for Distributional Reinforcement Learning}, 
      author={Björn Lindenberg and Jonas Nordqvist and Karl-Olof Lindahl},
      year={2021},
      eprint={2112.07424},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Data

  • Agent scores are available in the data folder.
  • Raw experiment data for each seed is available in the folder data/supplementary.
  • Each seed was run on a VM Ubuntu 20.04 server with 64GB RAM, a single Nvidia Quadro P4000 GPU and TensorFlow 2.5.

Code

  • The C++20 source code that handles ALE and transition buffering resides in src.
  • The agent code, written in TensorFlow/Python (with algorithms), can be viewed in c2d.
  • Requires cuDNN, TensorFlow 2.X, python3, The Arcade Learning Environment, C++20 and LZ4. For a comprehensive view of dependencies, have a look at our VM setup files in install_scripts.

Atari Games

  • To avoid legal issues, our Atari 2600 rom file directory ale_roms is left empty. However the corresponding binaries are widely available for import from elsewhere, e.g., Breakout or breakout.bin can be extracted from the atari-py Python package.

Library

  • The directory ale_roms needs to be populated by the relevant binaries of different Atari games. ALE's checksum file md5.txt for checking binary compatibility is present in the root directory.

  • The initial library setup or any changes to settings.cmake will require compilation by

    bash build_lib.sh
    
  • One can train for one iteration (1M frames) in Breakout with:

    python3 run.py --game breakout --tag test --iterations 1
    

Figures

Performance Profile (Deep reinforcement learning at the edge of the statistical precipice, Agarwal et al. 2021)

Performance Profile Aggregate Metrics

Sampling Efficiency: Mean and Median

Mean Median

Training Graphs

All Games

Strong/Weak Examples

Support Evolution

Support

[AI6122] Text Data Management & Processing

[AI6122] Text Data Management & Processing is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instruc

HT. Li 1 Jan 17, 2022
Unsupervised Domain Adaptation for Nighttime Aerial Tracking (CVPR2022)

Unsupervised Domain Adaptation for Nighttime Aerial Tracking (CVPR2022) Junjie Ye, Changhong Fu, Guangze Zheng, Danda Pani Paudel, and Guang Chen. Uns

Intelligent Vision for Robotics in Complex Environment 91 Dec 30, 2022
CNN Based Meta-Learning for Noisy Image Classification and Template Matching

CNN Based Meta-Learning for Noisy Image Classification and Template Matching Introduction This master thesis used a few-shot meta learning approach to

Kumar Manas 2 Dec 09, 2021
A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

4.9k Jan 03, 2023
The (Official) PyTorch Implementation of the paper "Deep Extraction of Manga Structural Lines"

MangaLineExtraction_PyTorch The (Official) PyTorch Implementation of the paper "Deep Extraction of Manga Structural Lines" Usage model_torch.py [sourc

Miaomiao Li 82 Jan 02, 2023
HODEmu, is both an executable and a python library that is based on Ragagnin 2021 in prep.

HODEmu HODEmu, is both an executable and a python library that is based on Ragagnin 2021 in prep. and emulates satellite abundance as a function of co

Antonio Ragagnin 1 Oct 13, 2021
Beyond imagenet attack (accepted by ICLR 2022) towards crafting adversarial examples for black-box domains.

Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains (ICLR'2022) This is the Pytorch code for our paper Beyond ImageNet

Alibaba-AAIG 37 Nov 23, 2022
[CVPR2021] DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datasets

DoDNet This repo holds the pytorch implementation of DoDNet: DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datase

116 Dec 12, 2022
Official code for the CVPR 2021 paper "How Well Do Self-Supervised Models Transfer?"

How Well Do Self-Supervised Models Transfer? This repository hosts the code for the experiments in the CVPR 2021 paper How Well Do Self-Supervised Mod

Linus Ericsson 157 Dec 16, 2022
This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.

This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.

4 Aug 02, 2022
Bridging Composite and Real: Towards End-to-end Deep Image Matting

Bridging Composite and Real: Towards End-to-end Deep Image Matting Please note that the official repository of the paper Bridging Composite and Real:

Jizhizi_Li 30 Oct 31, 2022
PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation

StructDepth PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimat

SJTU-ViSYS 112 Nov 28, 2022
Official DGL implementation of "Rethinking High-order Graph Convolutional Networks"

SE Aggregation This is the implementation for Rethinking High-order Graph Convolutional Networks. Here we show the codes for citation networks as an e

Tianqi Zhang (张天启) 32 Jul 19, 2022
Learning to Segment Instances in Videos with Spatial Propagation Network

Learning to Segment Instances in Videos with Spatial Propagation Network This paper is available at the 2017 DAVIS Challenge website. Check our result

Jingchun Cheng 145 Sep 28, 2022
Human Action Controller - A human action controller running on different platforms.

Human Action Controller (HAC) Goal A human action controller running on different platforms. Fun Easy-to-use Accurate Anywhere Fun Examples Mouse Cont

27 Jul 20, 2022
Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning

structshot Code and data for paper "Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning", Yi Yang and Arz

ASAPP Research 47 Dec 27, 2022
Calibrate your listeners! Robust communication-based training for pragmatic speakers. Findings of EMNLP 2021.

Calibrate your listeners! Robust communication-based training for pragmatic speakers Rose E. Wang, Julia White, Jesse Mu, Noah D. Goodman Findings of

Rose E. Wang 3 Apr 02, 2022
MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation

MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation This repo is the official implementation of "MHFormer: Multi-Hypothesis Transforme

Vegetabird 281 Jan 07, 2023
Training Very Deep Neural Networks Without Skip-Connections

DiracNets v2 update (January 2018): The code was updated for DiracNets-v2 in which we removed NCReLU by adding per-channel a and b multipliers without

Sergey Zagoruyko 585 Oct 12, 2022
Implementation of RegretNet with Pytorch

Dependencies are Python 3, a recent PyTorch, numpy/scipy, tqdm, future and tensorboard. Plotting with Matplotlib. Implementation of the neural network

Horris zhGu 1 Nov 05, 2021