Neural Magic Eye: Learning to See and Understand the Scene Behind an Autostereogram, arXiv:2012.15692.

Overview

Neural Magic Eye

Preprint | Project Page | Colab Runtime

Official PyTorch implementation of the preprint paper "NeuralMagicEye: Learning to See and Understand the Scene Behind an Autostereogram", arXiv:2012.15692.

An autostereogram, a.k.a. magic eye image, is a single-image stereogram that can create visual illusions of 3D scenes from 2D textures. This paper studies an interesting question that whether a deep CNN can be trained to recover the depth behind an autostereogram and understand its content. The key to the autostereogram magic lies in the stereopsis - to solve such a problem, a model has to learn to discover and estimate disparity from the quasi-periodic textures. We show that deep CNNs embedded with disparity convolution, a novel convolutional layer proposed in this paper that simulates stereopsis and encodes disparity, can nicely solve such a problem after being sufficiently trained on a large 3D object dataset in a self-supervised fashion. We refer to our method as "NeuralMagicEye". Experiments show that our method can accurately recover the depth behind autostereograms with rich details and gradient smoothness. Experiments also show the completely different working mechanisms for autostereogram perception between neural networks and human eyes. We hope this research can help people with visual impairments and those who have trouble viewing autostereograms.

In this repository, we provide the complete training/inference implementation of our paper based on Pytorch and provide several demos that can be used for reproducing the results reported in our paper. With the code, you can also try on your own data by following the instructions below.

The implementation of the UNet architecture in our code is partially adapted from the project pytorch-CycleGAN-and-pix2pix.

License

See the LICENSE file for license rights and limitations (MIT).

One-min video result

IMAGE ALT TEXT HERE

Requirements

See Requirements.txt.

Setup

  1. Clone this repo:
git clone https://github.com/jiupinjia/neural-magic-eye.git 
cd neural-magic-eye
  1. Download our pretrained autostereogram decoding network from the Google Drive, and unzip them to the repo directory.
unzip checkpoints_decode_sp_u256_bn_df.zip

To reproduce our results

Decoding autostereograms

python demo_decode_image.py --in_folder ./test_images --out_folder ./decode_output --net_G unet_256 --norm_type batch --with_disparity_conv --in_size 256 --checkpoint_dir ./checkpoints_decode_sp_u256_bn_df

Decoding autostereograms (animated)

  • Stanford Bunny

python demo_decode_animated.py --in_file ./test_videos/bunny.mp4 --out_folder ./decode_output --net_G unet_256 --norm_type batch --with_disparity_conv --in_size 256 --checkpoint_dir ./checkpoints_decode_sp_u256_bn_df
  • Stanford Armadillo

python demo_decode_animated.py --in_file ./test_videos/bunny.mp4 --out_folder ./decode_output --net_G unet_256 --norm_type batch --with_disparity_conv --in_size 256 --checkpoint_dir ./checkpoints_decode_sp_u256_bn_df

Google Colab

Here we also provide a minimal working example of the inference runtime of our method. Check out this link and see your result on Colab.

To retrain your decoding/classification model

If you want to retrain our model, or want to try a different network configuration, you will first need to download our experimental dataset and then unzip it to the repo directory.

unzip datasets.zip

Note that to build the training pipeline, you will need a set of depth images and background textures, which are already there included in our pre-processed dataset (see folders ./dataset/ShapeNetCore.v2 and ./dataset/Textures for more details). The autostereograms will be generated on the fly during the training process.

In the following, we provide several examples for training our decoding/classification models with different configurations. Particularly, if you are interested in exploring different network architectures, you can check out --net_G , --norm_type , --with_disparity_conv and --with_skip_connection for more details.

To train the decoding network (on mnist dataset, unet_64 + bn, without disparity_conv)

python train_decoder.py --dataset mnist --net_G unet_64 --in_size 64 --batch_size 32 --norm_type batch --checkpoint_dir ./checkpoints_your_model_name_here --vis_dir ./val_out_your_model_name_here

To train the decoding network (on shapenet dataset, resnet18 + in + disparity_conv + fpn)

python train_decoder.py --dataset shapenet --net_G resnet18fcn --in_size 128 --batch_size 32 --norm_type instance --with_disparity_conv --with_skip_connection --checkpoint_dir ./checkpoints_your_model_name_here --vis_dir ./val_out_your_model_name_here

To train the watermark decoding model (unet256 + bn + disparity_conv)

python train_decoder.py --dataset watermarking --net_G unet_256 --in_size 256 --batch_size 16 --norm_type batch --with_disparity_conv --checkpoint_dir ./checkpoints_your_model_name_here --vis_dir ./val_out_your_model_name_here

To train the classification network (on mnist dataset, resnet18 + in + disparity_conv)

python train_classifier.py --dataset mnist --net_G resnet18 --in_size 64 --batch_size 32 --norm_type instance --with_disparity_conv --checkpoint_dir ./checkpoints_your_model_name_here --vis_dir ./val_out_your_model_name_here

To train the classification network (on shapenet dataset, resnet18 + bn + disparity_conv)

python train_classifier.py --dataset shapenet --net_G resnet18 --in_size 64 --batch_size 32 --norm_type batch --with_disparity_conv --checkpoint_dir ./checkpoints_your_model_name_here --vis_dir ./val_out_your_model_name_here

Network architectures and performance

In the following, we show the decoding/classification accuracy with different model architectures. We hope these statistics can help you if you want to build your own model.

Citation

If you use our code for your research, please cite the following paper:

@misc{zou2020neuralmagiceye,
      title={NeuralMagicEye: Learning to See and Understand the Scene Behind an Autostereogram}, 
      author={Zhengxia Zou and Tianyang Shi and Yi Yuan and Zhenwei Shi},
      year={2020},
      eprint={2012.15692},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Zhengxia Zou
Postdoc at the University of Michigan. Research interest: computer vision and applications in remote sensing, self-driving, and video games.
Zhengxia Zou
Collect super-resolution related papers, data, repositories

Collect super-resolution related papers, data, repositories

WangChaofeng 1.7k Jan 03, 2023
Tensorflow 2 implementations of the C-SimCLR and C-BYOL self-supervised visual representation methods from "Compressive Visual Representations" (NeurIPS 2021)

Compressive Visual Representations This repository contains the source code for our paper, Compressive Visual Representations. We developed informatio

Google Research 30 Nov 23, 2022
Official repository for the CVPR 2021 paper "Learning Feature Aggregation for Deep 3D Morphable Models"

Deep3DMM Official repository for the CVPR 2021 paper Learning Feature Aggregation for Deep 3D Morphable Models. Requirements This code is tested on Py

38 Dec 27, 2022
Exploration-Exploitation Dilemma Solving Methods

Exploration-Exploitation Dilemma Solving Methods Medium article for this repo - HERE In ths repo I implemented two techniques for tackling mentioned t

Aman Mishra 6 Jan 25, 2022
Brain Tumor Detection with Tensorflow Neural Networks.

Brain-Tumor-Detection A convolutional neural network model built with Tensorflow & Keras to detect brain tumor and its different variants. Data of the

404ErrorNotFound 5 Aug 23, 2022
Computational inteligence project on faces in the wild dataset

Table of Contents The general idea How these scripts work? Loading data Needed modules and global variables Parsing the arrays in dataset Extracting a

tooraj taraz 4 Oct 21, 2022
Adaptive, interpretable wavelets across domains (NeurIPS 2021)

Adaptive wavelets Wavelets which adapt given data (and optionally a pre-trained model). This yields models which are faster, more compressible, and mo

Yu Group 50 Dec 16, 2022
Delving into Localization Errors for Monocular 3D Object Detection, CVPR'2021

Delving into Localization Errors for Monocular 3D Detection By Xinzhu Ma, Yinmin Zhang, Dan Xu, Dongzhan Zhou, Shuai Yi, Haojie Li, Wanli Ouyang. Intr

XINZHU.MA 124 Jan 04, 2023
Pytorch implementation of MalConv

MalConv-Pytorch A Pytorch implementation of MalConv Desciprtion This is the implementation of MalConv proposed in Malware Detection by Eating a Whole

Alexander H. Liu 58 Oct 26, 2022
A simple Tensorflow based library for deep and/or denoising AutoEncoder.

libsdae - deep-Autoencoder & denoising autoencoder A simple Tensorflow based library for Deep autoencoder and denoising AE. Library follows sklearn st

Rajarshee Mitra 147 Nov 18, 2022
VACA: Designing Variational Graph Autoencoders for Interventional and Counterfactual Queries

VACA Code repository for the paper "VACA: Designing Variational Graph Autoencoders for Interventional and Counterfactual Queries (arXiv)". The impleme

Pablo Sánchez-Martín 16 Oct 10, 2022
Improved Fitness Optimization Landscapes for Sequence Design

ReLSO Improved Fitness Optimization Landscapes for Sequence Design Description Citation How to run Training models Original data source Description In

Krishnaswamy Lab 44 Dec 20, 2022
A commany has recently introduced a new type of bidding, the average bidding, as an alternative to the bid given to the current maximum bidding

Business Problem A commany has recently introduced a new type of bidding, the average bidding, as an alternative to the bid given to the current maxim

Kübra Bilinmiş 1 Jan 15, 2022
Replication package for the manuscript "Using Personality Detection Tools for Software Engineering Research: How Far Can We Go?" submitted to TOSEM

tosem2021-personality-rep-package Replication package for the manuscript "Using Personality Detection Tools for Software Engineering Research: How Far

Collaborative Development Group 1 Dec 13, 2021
Hypernetwork-Ensemble Learning of Segmentation Probability for Medical Image Segmentation with Ambiguous Labels

Hypernet-Ensemble Learning of Segmentation Probability for Medical Image Segmentation with Ambiguous Labels The implementation of Hypernet-Ensemble Le

Sungmin Hong 6 Jul 18, 2022
Container : Context Aggregation Network

Container : Context Aggregation Network If you use this code for a paper please cite: @article{gao2021container, title={Container: Context Aggregati

AI2 47 Dec 16, 2022
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation

Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici

24 Dec 31, 2022
Library for 8-bit optimizers and quantization routines.

bitsandbytes Bitsandbytes is a lightweight wrapper around CUDA custom functions, in particular 8-bit optimizers and quantization functions. Paper -- V

Facebook Research 687 Jan 04, 2023
Light-SERNet: A lightweight fully convolutional neural network for speech emotion recognition

Light-SERNet This is the Tensorflow 2.x implementation of our paper "Light-SERNet: A lightweight fully convolutional neural network for speech emotion

Arya Aftab 29 Nov 12, 2022
Code for `BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery`, Neurips 2021

This folder contains the code for 'Scalable Variational Approaches for Bayesian Causal Discovery'. Installation To install, use conda with conda env c

14 Sep 21, 2022