AdaFocus (ICCV 2021) Adaptive Focus for Efficient Video Recognition

Related tags

Deep LearningAdaFocus
Overview

AdaFocus (ICCV 2021)

This repo contains the official code and pre-trained models for AdaFocus.

Reference

If you find our code or paper useful for your research, please cite:

@InProceedings{Wang_2021_ICCV,
author = {Wang, Yulin and Chen, Zhaoxi and Jiang, Haojun and Song, Shiji and Han, Yizeng and Huang, Gao},
title = {Adaptive Focus for Efficient Video Recognition},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
month = {October},
year = {2021}
}

Introduction

In this paper, we explore the spatial redundancy in video recognition with the aim to improve the computational efficiency. It is observed that the most informative region in each frame of a video is usually a small image patch, which shifts smoothly across frames. Therefore, we model the patch localization problem as a sequential decision task, and propose a reinforcement learning based approach for efficient spatially adaptive video recognition (AdaFocus). In specific, a light-weighted ConvNet is first adopted to quickly process the full video sequence, whose features are used by a recurrent policy network to localize the most task-relevant regions. Then the selected patches are inferred by a high-capacity network for the final prediction. During offline inference, once the informative patch sequence has been generated, the bulk of computation can be done in parallel, and is efficient on modern GPU devices. In addition, we demonstrate that the proposed method can be easily extended by further considering the temporal redundancy, e.g., dynamically skipping less valuable frames. Extensive experiments on five benchmark datasets, i.e., ActivityNet, FCVID, Mini-Kinetics, Something-Something V1&V2, demonstrate that our method is significantly more efficient than the competitive baselines.

Result

  • ActivityNet

  • Something-Something V1&V2

  • Visualization

Requirements

  • python 3.8
  • pytorch 1.7.0
  • torchvision 0.8.0
  • hydra 1.1.0

Datasets

  1. Please get train/test splits file for each dataset from Google Drive and put them in PATH_TO_DATASET.
  2. Download videos from following links, or contact the corresponding authors for the access. Save them to PATH_TO_DATASET/videos
  1. Extract frames using ops/video_jpg.py, the frames will be saved to PATH_TO_DATASET/frames. Minor modifications on file path are needed when extracting frames from different dataset.

Pre-trained Models

Please download pretrained weights and checkpoints from Google Drive.

  • globalcnn.pth.tar: pretrained weights for global CNN (MobileNet-v2).
  • localcnn.pth.tar: pretrained weights for local CNN (ResNet-50).
  • 128checkpoint.pth.tar: checkpoint of stage 1 for patch size 128x128.
  • 160checkpoint.pth.tar: checkpoint of stage 1 for patch size 160x128.
  • 192checkpoint.pth.tar: checkpoint of stage 1 for patch size 192x128.

Training

  • Here we take training model with patch size 128x128 on ActivityNet dataset for example.

  • All logs and checkpoints will be saved in the directory: ./outputs/YYYY-MM-DD/HH-MM-SS

  • Note that we store a set of default paramenter in conf/default.yaml which can override through command line. You can also use your own config files.

  • Before training, please initialize Global CNN and Local CNN by fine-tuning the ImageNet pre-trained models in Pytorch using the following command:

for Global CNN:

CUDA_VISIBLE_DEVICES=0,1 python main_dist.py dataset=actnet data_dir=PATH_TO_DATASET train_stage=0 batch_size=64 workers=8 dropout=0.8 lr_type=cos backbone_lr=0.01 epochs=15 dist_url=tcp://127.0.0.1:8857 random_patch=true patch_size=128 glance_size=224 eval_freq=5 consensus=gru hidden_dim=1024 pretrain_glancer=true

for Local CNN:

CUDA_VISIBLE_DEVICES=0,1 python main_dist.py dataset=actnet data_dir=PATH_TO_DATASET train_stage=0 batch_size=64 workers=8 dropout=0.8 lr_type=cos backbone_lr=0.01 epochs=15 dist_url=tcp://127.0.0.1:8857 random_patch=true patch_size=128 glance_size=224 eval_freq=5 consensus=gru hidden_dim=1024 pretrain_glancer=false
  • Training stage 1, pretrained weights for Global CNN and Local CNN are required:
CUDA_VISIBLE_DEVICES=0,1 python main_dist.py dataset=actnet data_dir=PATH_TO_DATASET train_stage=1 batch_size=64 workers=8 dropout=0.8 lr_type=cos backbone_lr=0.0005 fc_lr=0.05 epochs=50 dist_url=tcp://127.0.0.1:8857 random_patch=true patch_size=128 glance_size=224 eval_freq=5 consensus=gru hidden_dim=1024 pretrained_glancer=PATH_TO_CHECKPOINTS pretrained_focuser=PATH_TO_CHECKPOINTS
  • Training stage 2, a stage-1 checkpoint is required:
CUDA_VISIBLE_DEVICES=0 python main_dist.py dataset=actnet data_dir=PATH_TO_DATASET train_stage=2 batch_size=64 workers=8 dropout=0.8 lr_type=cos backbone_lr=0.0005 fc_lr=0.05 epochs=50 random_patch=false patch_size=128 glance_size=224 action_dim=49 eval_freq=5 consensus=gru hidden_dim=1024 resume=PATH_TO_CHECKPOINTS multiprocessing_distributed=false distributed=false
  • Training stage 3, a stage-2 checkpoint is required:
CUDA_VISIBLE_DEVICES=0,1 python main_dist.py dataset=actnet data_dir=PATH_TO_DATASET train_stage=3 batch_size=64 workers=8 dropout=0.8 lr_type=cos backbone_lr=0.0005 fc_lr=0.005 epochs=10 random_patch=false patch_size=128 glance_size=224 action_dim=49 eval_freq=5 consensus=gru hidden_dim=1024 resume=PATH_TO_CHECKPOINTS multiprocessing_distributed=false distributed=false

Contact

If you have any question, feel free to contact the authors or raise an issue. Yulin Wang: [email protected].

Acknowledgement

We use implementation of MobileNet-v2 and ResNet from Pytorch source code. We also borrow some codes for dataset preparation from AR-Net and PPO from here.

Owner
Rainforest Wang
Rainforest Wang
A full pipeline AutoML tool for tabular data

HyperGBM Doc | 中文 We Are Hiring! Dear folks,we are offering challenging opportunities located in Beijing for both professionals and students who are k

DataCanvas 240 Jan 03, 2023
EMNLP'2021: Simple Entity-centric Questions Challenge Dense Retrievers

EntityQuestions This repository contains the EntityQuestions dataset as well as code to evaluate retrieval results from the the paper Simple Entity-ce

Princeton Natural Language Processing 119 Sep 28, 2022
Dataset and Code for the paper "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021), and "Depth-only Object Tracking" (BMVC2021)

DeT and DOT Code and datasets for "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021) "Depth-only Object Tracking" (BMVC2021) @InProceedings

Yan Song 55 Dec 15, 2022
PyTorch inference for "Progressive Growing of GANs" with CelebA snapshot

Progressive Growing of GANs inference in PyTorch with CelebA training snapshot Description This is an inference sample written in PyTorch of the origi

320 Nov 21, 2022
Data, notebooks, and articles associated with the RSNA AI Deep Learning Lab at RSNA 2021

RSNA AI Deep Learning Lab 2021 Intro Welcome Deep Learners! This document provides all the information you need to participate in the RSNA AI Deep Lea

RSNA 65 Dec 16, 2022
PyTorch implementation of 1712.06087 "Zero-Shot" Super-Resolution using Deep Internal Learning

Unofficial PyTorch implementation of "Zero-Shot" Super-Resolution using Deep Internal Learning Unofficial Implementation of 1712.06087 "Zero-Shot" Sup

Jacob Gildenblat 196 Nov 27, 2022
Setup freqtrade/freqUI on Heroku

UNMAINTAINED - REPO MOVED TO https://github.com/p-zombie/freqtrade Creating the app git clone https://github.com/joaorafaelm/freqtrade.git && cd freqt

João 51 Aug 29, 2022
torchbearer: A model fitting library for PyTorch

Note: We're moving to PyTorch Lightning! Read about the move here. From the end of February, torchbearer will no longer be actively maintained. We'll

632 Dec 13, 2022
Implementation and replication of ProGen, Language Modeling for Protein Generation, in Jax

ProGen - (wip) Implementation and replication of ProGen, Language Modeling for Protein Generation, in Pytorch and Jax (the weights will be made easily

Phil Wang 71 Dec 01, 2022
Semi-supervised Implicit Scene Completion from Sparse LiDAR

Semi-supervised Implicit Scene Completion from Sparse LiDAR Paper Created by Pengfei Li, Yongliang Shi, Tianyu Liu, Hao Zhao, Guyue Zhou and YA-QIN ZH

114 Nov 30, 2022
PyTorch code for: Learning to Generate Grounded Visual Captions without Localization Supervision

Learning to Generate Grounded Visual Captions without Localization Supervision This is the PyTorch implementation of our paper: Learning to Generate G

Chih-Yao Ma 41 Nov 17, 2022
Fast and exact ILP-based solvers for the Minimum Flow Decomposition (MFD) problem, and variants of it.

MFD-ILP Fast and exact ILP-based solvers for the Minimum Flow Decomposition (MFD) problem, and variants of it. The solvers are implemented using Pytho

Algorithmic Bioinformatics Group @ University of Helsinki 4 Oct 23, 2022
Official Implementation of "Designing an Encoder for StyleGAN Image Manipulation"

Designing an Encoder for StyleGAN Image Manipulation (SIGGRAPH 2021) Recently, there has been a surge of diverse methods for performing image editing

749 Jan 09, 2023
Repo for EMNLP 2021 paper "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression"

beyond-preserved-accuracy Repo for EMNLP 2021 paper "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression" How to implemen

Kevin Canwen Xu 10 Dec 23, 2022
A mini library for Policy Gradients with Parameter-based Exploration, with reference implementation of the ClipUp optimizer from NNAISENSE.

PGPElib A mini library for Policy Gradients with Parameter-based Exploration [1] and friends. This library serves as a clean re-implementation of the

NNAISENSE 56 Jan 01, 2023
Spatial-Temporal Transformer for Dynamic Scene Graph Generation, ICCV2021

Spatial-Temporal Transformer for Dynamic Scene Graph Generation Pytorch Implementation of our paper Spatial-Temporal Transformer for Dynamic Scene Gra

Yuren Cong 119 Jan 01, 2023
Code of Periodic Activation Functions Induce Stationarity

Periodic Activation Functions Induce Stationarity This repository is the official implementation of the methods in the publication: L. Meronen, M. Tra

AaltoML 12 Jun 07, 2022
Camera calibration & 3D pose estimation tools for AcinoSet

AcinoSet: A 3D Pose Estimation Dataset and Baseline Models for Cheetahs in the Wild Daniel Joska, Liam Clark, Naoya Muramatsu, Ricardo Jericevich, Fre

African Robotics Unit 42 Nov 16, 2022
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python =3.8.0 Pytorch =1.7.1 Usage wit

7 Oct 13, 2022
Supervised multi-SNE (S-multi-SNE): Multi-view visualisation and classification

S-multi-SNE Supervised multi-SNE (S-multi-SNE): Multi-view visualisation and classification A repository containing the code to reproduce the findings

Theodoulos Rodosthenous 3 Apr 15, 2022