PyTorch inference for "Progressive Growing of GANs" with CelebA snapshot

Overview

Progressive Growing of GANs inference in PyTorch with CelebA training snapshot

Description

This is an inference sample written in PyTorch of the original Theano/Lasagne code.

I recreated the network as described in the paper of Karras et al. Since some layers seemed to be missing in PyTorch, these were implemented as well. The network and the layers can be found in model.py.

For the demo, a 100-celeb-hq-1024x1024-ours snapshot was used, which was made publicly available by the authors. Since I couldn't find any model converter between Theano/Lasagne and PyTorch, I used a quick and dirty script to transfer the weights between the models (transfer_weights.py).

This repo does not provide the code for training the networks.

Simple inference

To run the demo, simply execute predict.py. You can specify other weights with the --weights flag.

Example image:

Example image

Latent space interpolation

To try the latent space interpolation, use latent_interp.py. All output images will be saved in ./interp.

You can chose between the "gaussian interpolation" introduced in the original paper and the "slerp interpolation" introduced by Tom White in his paper Sampling Generative Networks using the --type argument.

Use --filter to change the gaussian filter size for the gaussian interpolation and --interp for the interpolation steps for the slerp interpolation.

The following arguments are defined:

  • --weights - path to pretrained PyTorch state dict
  • --output - Directory for storing interpolated images
  • --batch_size - batch size for DataLoader
  • --num_workers - number of workers for DataLoader
  • --type {gauss, slerp} - interpolation type
  • --nb_latents - number of latent vectors to generate
  • --filter - gaussian filter length for interpolating latent space (gauss interpolation)
  • --interp - interpolation length between each latent vector (slerp interpolation)
  • --seed - random seed for numpy and PyTorch
  • --cuda - use GPU

The total number of generated frames depends on the used interpolation technique.

For gaussian interpolation the number of generated frames equals nb_latents, while the slerp interpolation generates nb_latents * interp frames.

Example interpolation:

Example interpolation

Live latent space interpolation

A live demo of the latent space interpolation using PyGame can be seen in pygame_interp_demo.py.

Use the --size argument to change the output window size.

The following arguments are defined:

  • --weights - path to pretrained PyTorch state dict
  • --num_workers - number of workers for DataLoader
  • --type {gauss, slerp} - interpolation type
  • --nb_latents - number of latent vectors to generate
  • --filter - gaussian filter length for interpolating latent space (gauss interpolation)
  • --interp - interpolation length between each latent vector (slerp interpolation)
  • --size - PyGame window size
  • --seed - random seed for numpy and PyTorch
  • --cuda - use GPU

Transferring weights

The pretrained lasagne weights can be transferred to a PyTorch state dict using transfer_weights.py.

To transfer other snapshots from the paper (other than CelebA), you have to modify the model architecture accordingly and use the corresponding weights.

Environment

The code was tested on Ubuntu 16.04 with an NVIDIA GTX 1080 using PyTorch v.0.2.0_4.

  • transfer_weights.py needs Theano and Lasagne to load the pretrained weights.
  • pygame_interp_demo.py needs PyGame to visualize the output

A single forward pass took approx. 0.031 seconds.

Links

License

This code is a modified form of the original code under the CC BY-NC license with the following copyright notice:

# Copyright (c) 2017, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the Creative Commons Attribution-NonCommercial
# 4.0 International License. To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
# Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

According the Section 3, I hereby identify Tero Karras et al. and NVIDIA as the original authors of the material.

Owner
Deep Learning Frameworks @NVIDIA
DANet for Tabular data classification/ regression.

Deep Abstract Networks A PyTorch code implemented for the submission DANets: Deep Abstract Networks for Tabular Data Classification and Regression. Do

Ronnie Rocket 55 Sep 14, 2022
QHack—the quantum machine learning hackathon

Official repo for QHack—the quantum machine learning hackathon

Xanadu 72 Dec 21, 2022
[CVPR'22] Official PyTorch Implementation of Collaborative Transformers for Grounded Situation Recognition

[CVPR'22] Collaborative Transformers for Grounded Situation Recognition Paper | Model Checkpoint This is the official PyTorch implementation of Collab

Junhyeong Cho 29 Dec 10, 2022
In-Place Activated BatchNorm for Memory-Optimized Training of DNNs

In-Place Activated BatchNorm In-Place Activated BatchNorm for Memory-Optimized Training of DNNs In-Place Activated BatchNorm (InPlace-ABN) is a novel

1.3k Dec 29, 2022
Model Serving Made Easy

The easiest way to build Machine Learning APIs BentoML makes moving trained ML models to production easy: Package models trained with any ML framework

BentoML 4.4k Jan 08, 2023
Collect some papers about transformer with vision. Awesome Transformer with Computer Vision (CV)

Awesome Visual-Transformer Collect some Transformer with Computer-Vision (CV) papers. If you find some overlooked papers, please open issues or pull r

dkliang 2.8k Jan 08, 2023
PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition, CVPR 2018

PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place

Mikaela Uy 294 Dec 12, 2022
Koç University deep learning framework.

Knet Knet (pronounced "kay-net") is the Koç University deep learning framework implemented in Julia by Deniz Yuret and collaborators. It supports GPU

1.4k Dec 31, 2022
A 1.3B text-to-image generation model trained on 14 million image-text pairs

minDALL-E on Conceptual Captions minDALL-E, named after minGPT, is a 1.3B text-to-image generation model trained on 14 million image-text pairs for no

Kakao Brain 604 Dec 14, 2022
Concept drift monitoring for HA model servers.

{Fast, Correct, Simple} - pick three Easily compare training and production ML data & model distributions Goals Boxkite is an instrumentation library

98 Dec 15, 2022
Implementation of fast algorithms for Maximum Spanning Tree (MST) parsing that includes fast ArcMax+Reweighting+Tarjan algorithm for single-root dependency parsing.

Fast MST Algorithm Implementation of fast algorithms for (Maximum Spanning Tree) MST parsing that includes fast ArcMax+Reweighting+Tarjan algorithm fo

Miloš Stanojević 11 Oct 14, 2022
A denoising diffusion probabilistic model (DDPM) tailored for conditional generation of protein distograms

Denoising Diffusion Probabilistic Model for Proteins Implementation of Denoising Diffusion Probabilistic Model in Pytorch. It is a new approach to gen

Phil Wang 108 Nov 23, 2022
A hifiasm fork for metagenome assembly using Hifi reads.

hifiasm_meta - de novo metagenome assembler, based on hifiasm, a haplotype-resolved de novo assembler for PacBio Hifi reads.

44 Jul 10, 2022
Robotic Process Automation in Windows and Linux by using Driagrams.net BPMN diagrams.

BPMN_RPA Robotic Process Automation in Windows and Linux by using BPMN diagrams. With this Framework you can draw Business Process Model Notation base

23 Dec 14, 2022
Crosslingual Segmental Language Model

Crosslingual Segmental Language Model This repository contains the code from Multilingual unsupervised sequence segmentation transfers to extremely lo

C.M. Downey 1 Jun 13, 2022
[CVPR 2021] MetaSAug: Meta Semantic Augmentation for Long-Tailed Visual Recognition

MetaSAug: Meta Semantic Augmentation for Long-Tailed Visual Recognition (CVPR 2021) arXiv Prerequisite PyTorch = 1.2.0 Python3 torchvision PIL argpar

51 Nov 11, 2022
Convert Table data to approximate values with GUI

Table_Editor Convert Table data to approximate values with GUIs... usage - Import methods for extension Tables. Imported method supposed to have only

CLJ 1 Jan 10, 2022
Rethinking Portrait Matting with Privacy Preserving

Rethinking Portrait Matting with Privacy Preserving This is the official repository of the paper Rethinking Portrait Matting with Privacy Preserving.

184 Jan 03, 2023
A model which classifies reviews as positive or negative.

SentiMent Analysis In this project I built a model to classify movie reviews fromn the IMDB dataset of 50K reviews. WordtoVec : Neural networks only w

Rishabh Bali 2 Feb 09, 2022