FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective

Related tags

Deep LearningFL-WBC
Overview

FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective

Official implementation of "FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective"

Abstract

Federated learning (FL) is a popular distributed learning framework that trains a global model through iterative communications between a central server and edge devices. Recent works have demonstrated that FL is vulnerable to model poisoning attacks. Several server-based defense approaches (e.g. robust aggregation), have been proposed to mitigate such attacks. However, we empirically show that under extremely strong attacks, these defensive methods fail to guarantee the robustness of FL. More importantly, we observe that as long as the global model is polluted, the impact of attacks on the global model will remain in subsequent rounds even if there are no subsequent attacks. In this work, we propose a client-based defense, named White Blood Cell for Federated Learning (FL-WBC), which can mitigate model poisoning attacks that have already polluted the global model. The key idea of FL-WBC is to identify the parameter space where long-lasting attack effect on parameters resides and perturb that space during local training. Furthermore, we can derive a certified robustness guarantee against model poisoning attacks and a convergence guarantee to FedAvg after applying our FL-WBC. We conduct experiments on FasionMNIST and CIFAR10 to evaluate the defense against state-of-the-art model poisoning attacks. The results demonstrate that our method can effectively mitigate model poisoning attack impact on the global model within 5 communication rounds with nearly no accuracy drop under both IID and Non-IID settings. Our defense is also complementary to existing server-based robust aggregation approaches and can further improve the robustness of FL under extremely strong attacks.

Setup

pytorch=1.2.0
torchvision=0.4.0

Quick start

For CIFAR10 dataset, you can reproduce the results of single image defense in the paper by running

python fedavg.py --dataset=cifar --num_users=100 --iid=1 --gpu=0 --frac=0.1 --model=cnn --epoch=500 --mal_boost=5 --local_mal_ep=10 --pert_strength=0.4 --num_mal_samples=1 --defense=WBC

Important hyperparameters

--pert_strength: "s" in the paper (std of $\Upsilon$)
--mal_boost: the number of attackers in one round
Owner
Jingwei Sun
Ph.D student
Jingwei Sun
Dynamic Environments with Deformable Objects (DEDO)

DEDO - Dynamic Environments with Deformable Objects DEDO is a lightweight and customizable suite of environments with deformable objects. It is aimed

Rika 32 Dec 22, 2022
113 Nov 28, 2022
This repository provides code for "On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness".

On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness This repository provides the code for the paper On Interaction B

Meta Research 33 Dec 08, 2022
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Z

Yongming Rao 321 Dec 27, 2022
BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment

BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment

Holy Wu 35 Jan 01, 2023
Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings

Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings Results on STS Tasks Model STS12 STS13 STS14 STS15 STS16 STSb SICK-R Avg. unsup-prompt-be

196 Jan 08, 2023
Implementation of CSRL from the AAAI2022 paper: Constraint Sampling Reinforcement Learning: Incorporating Expertise For Faster Learning

CSRL Implementation of CSRL from the AAAI2022 paper: Constraint Sampling Reinforcement Learning: Incorporating Expertise For Faster Learning Python: 3

4 Apr 14, 2022
Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020

Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020 BibTeX @INPROCEEDINGS{punnappurath2020modeling, author={Abhi

Abhijith Punnappurath 22 Oct 01, 2022
Focal Loss for Dense Rotation Object Detection

Convert ResNets weights from GluonCV to Tensorflow Abstract GluonCV released some new resnet pre-training weights and designed some new resnets (such

17 Nov 24, 2021
Bootstrapped Unsupervised Sentence Representation Learning (ACL 2021)

Install first pip3 install -e . Training python3 training/unsupervised_tuning.py python3 training/supervised_tuning.py python3 training/multilingual_

yanzhang_nlp 26 Jul 22, 2022
Temporal Knowledge Graph Reasoning Triggered by Memories

MTDM Temporal Knowledge Graph Reasoning Triggered by Memories To alleviate the time dependence, we propose a memory-triggered decision-making (MTDM) n

4 Sep 25, 2022
Classic Papers for Beginners and Impact Scope for Authors.

There have been billions of academic papers around the world. However, maybe only 0.0...01% among them are valuable or are worth reading. Since our limited life has never been forever, TopPaper provi

Qiulin Zhang 228 Dec 18, 2022
Deep Image Matting implementation in PyTorch

Deep Image Matting Deep Image Matting paper implementation in PyTorch. Differences "fc6" is dropped. Indices pooling. "fc6" is clumpy, over 100 millio

Yang Liu 724 Dec 27, 2022
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression YOLOv5 with alpha-IoU losses implemented in PyTorch. Example r

Jacobi(Jiabo He) 147 Dec 05, 2022
FS2KToolbox FS2K Dataset Towards the translation between Face

FS2KToolbox FS2K Dataset Towards the translation between Face -- Sketch. Download (photo+sketch+annotation): Google-drive, Baidu-disk, pw: FS2K. For

Deng-Ping Fan 5 Jan 03, 2023
Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays

Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays In this repo, you will find the instructions on how to requ

Intelligent Vision Research Lab 4 Jul 21, 2022
Code for the TPAMI paper: "Syntax Customized Video Captioning by Imitating Exemplar Sentences"

Syntax-Customized-Video-Captioning Code for the TPAMI paper: "Syntax Customized Video Captioning by Imitating Exemplar Sentences". This is my second w

3 Dec 05, 2022
Reinforcement learning algorithms in RLlib

raylab Reinforcement learning algorithms in RLlib and PyTorch. Installation pip install raylab Quickstart Raylab provides agents and environments to b

Ângelo 50 Sep 08, 2022
Official implementation of our paper "Learning to Bootstrap for Combating Label Noise"

Learning to Bootstrap for Combating Label Noise This repo is the official implementation of our paper "Learning to Bootstrap for Combating Label Noise

21 Apr 09, 2022
Implementation of Hourglass Transformer, in Pytorch, from Google and OpenAI

Hourglass Transformer - Pytorch (wip) Implementation of Hourglass Transformer, in Pytorch. It will also contain some of my own ideas about how to make

Phil Wang 61 Dec 25, 2022