giving — the reactive logger

Related tags

Logginggiving
Overview

giving — the reactive logger

Documentation

giving is a simple, magical library that lets you log or "give" arbitrary data throughout a program and then process it as an event stream. You can use it to log to the terminal, to wandb or mlflow, to compute minimums, maximums, rolling means, etc., separate from your program's core logic.

  1. Inside your code, give() every object or datum that you may want to log or compute metrics about.
  2. Wrap your main loop with given() and define pipelines to map, filter and reduce the data you gave.

Examples

Code Output

Simple logging

with given().display():
    a, b = 10, 20
    give()
    give(a * b, c=30)
a: 10; b: 20
a * b: 200; c: 30

Extract values into a list

with given()["s"].values() as results:
    s = 0
    for i in range(5):
        s += i
        give(s)

print(results)
[0, 1, 3, 6, 10]

Reductions (min, max, count, etc.)

def collatz(n):
    while n != 1:
        give(n)
        n = (3 * n + 1) if n % 2 else (n // 2)

with given() as gv:
    gv["n"].max().print("max: {}")
    gv["n"].count().print("steps: {}")

    collatz(2021)
max: 6064
steps: 63

Using the eval method instead of with:

st, = given()["n"].count().eval(collatz, 2021)
print(st)
63

The kscan method

with given() as gv:
    gv.kscan().display()

    give(elk=1)
    give(rabbit=2)
    give(elk=3, wolf=4)
elk: 1
elk: 1; rabbit: 2
elk: 3; rabbit: 2; wolf: 4

The throttle method

with given() as gv:
    gv.throttle(1).display()

    for i in range(50):
        give(i)
        time.sleep(0.1)
i: 0
i: 10
i: 20
i: 30
i: 40

The above examples only show a small number of all the available operators.

Give

There are multiple ways you can use give. give returns None unless it is given a single positional argument, in which case it returns the value of that argument.

  • give(key=value)

    This is the most straightforward way to use give: you write out both the key and the value associated.

    Returns: None

  • x = give(value)

    When no key is given, but the result of give is assigned to a variable, the key is the name of that variable. In other words, the above is equivalent to give(x=value).

    Returns: The value

  • give(x)

    When no key is given and the result is not assigned to a variable, give(x) is equivalent to give(x=x). If the argument is an expression like x * x, the key will be the string "x * x".

    Returns: The value

  • give(x, y, z)

    Multiple arguments can be given. The above is equivalent to give(x=x, y=y, z=z).

    Returns: None

  • x = value; give()

    If give has no arguments at all, it will look at the immediately previous statement and infer what you mean. The above is equivalent to x = value; give(x=value).

    Returns: None

Important functions and methods

See here for more details.

Operator summary

Not all operators are listed here. See here for the complete list.

Filtering

  • filter: filter with a function
  • kfilter: filter with a function (keyword arguments)
  • where: filter based on keys and simple conditions
  • where_any: filter based on keys
  • keep: filter based on keys (+drop the rest)
  • distinct: only emit distinct elements
  • norepeat: only emit distinct consecutive elements
  • first: only emit the first element
  • last: only emit the last element
  • take: only emit the first n elements
  • take_last: only emit the last n elements
  • skip: suppress the first n elements
  • skip_last: suppress the last n elements

Mapping

  • map: map with a function
  • kmap: map with a function (keyword arguments)
  • augment: add extra keys using a mapping function
  • getitem: extract value for a specific key
  • sole: extract value from dict of length 1
  • as_: wrap as a dict

Reduction

  • reduce: reduce with a function
  • scan: emit a result at each reduction step
  • roll: reduce using overlapping windows
  • kmerge: merge all dictionaries in the stream
  • kscan: incremental version of kmerge

Arithmetic reductions

Most of these reductions can be called with the scan argument set to True to use scan instead of reduce. scan can also be set to an integer, in which case roll is used.

Wrapping

  • wrap: give a special key at the beginning and end of a block
  • wrap_inherit: give a special key at the beginning and end of a block
  • inherit: add default key/values for every give() in the block
  • wrap: plug a context manager at the location of a give.wrap
  • kwrap: same as wrap, but pass kwargs

Timing

  • debounce: suppress events that are too close in time
  • sample: sample an element every n seconds
  • throttle: emit at most once every n seconds

Debugging

  • breakpoint: set a breakpoint whenever data comes in. Use this with filters.
  • tag: assigns a special word to every entry. Use with breakword.
  • breakword: set a breakpoint on a specific word set by tag, using the BREAKWORD environment variable.

Other

  • accum: accumulate into a list
  • display: print out the stream (pretty).
  • print: print out the stream.
  • values: accumulate into a list (context manager)
  • subscribe: run a task on every element
  • ksubscribe: run a task on every element (keyword arguments)

ML ideas

Here are some ideas for using giving in a machine learning model training context:

> is shorthand for .subscribe() losses >> wandb.log # Print the minimum loss at the end losses["loss"].min().print("Minimum loss: {}") # Print the mean of the last 100 losses # * affix adds columns, so we will display i, loss and meanloss together # * The scan argument outputs the mean incrementally # * It's important that each affixed column has the same length as # the losses stream (or "table") losses.affix(meanloss=losses["loss"].mean(scan=100)).display() # Store all the losses in a list losslist = losses["loss"].accum() # Set a breakpoint whenever the loss is nan or infinite losses["loss"].filter(lambda loss: not math.isfinite(loss)).breakpoint() # Filter all the lines that have the "model" key: models = gv.where("model") # Write a checkpoint of the model at most once every 30 minutes models["model"].throttle(30 * 60).subscribe( lambda model: model.checkpoint() ) # Watch with wandb, but only once at the very beginning models["model"].first() >> wandb.watch # Write the final model (you could also use models.last()) models.where(final=True)["model"].subscribe( lambda model: model.save() ) # =========================================================== # Finally, execute the code. All the pipelines we defined above # will proceed as we give data. # =========================================================== main() ">
from giving import give, given


def main():
    model = Model()

    for i in range(niters):
        # Give the model. give looks at the argument string, so 
        # give(model) is equivalent to give(model=model)
        give(model)

        loss = model.step()

        # Give the iteration number and the loss (equivalent to give(i=i, loss=loss))
        give(i, loss)

    # Give the final model. The final=True key is there so we can filter on it.
    give(model, final=True)


if __name__ == "__main__":
    with given() as gv:
        # ===========================================================
        # Define our pipeline **before** running main()
        # ===========================================================

        # Filter all the lines that have the "loss" key
        # NOTE: Same as gv.filter(lambda values: "loss" in values)
        losses = gv.where("loss")

        # Print the losses on stdout
        losses.display()                 # always
        losses.throttle(1).display()     # OR: once every second
        losses.slice(step=10).display()  # OR: every 10th loss

        # Log the losses (and indexes i) with wandb
        # >> is shorthand for .subscribe()
        losses >> wandb.log

        # Print the minimum loss at the end
        losses["loss"].min().print("Minimum loss: {}")

        # Print the mean of the last 100 losses
        # * affix adds columns, so we will display i, loss and meanloss together
        # * The scan argument outputs the mean incrementally
        # * It's important that each affixed column has the same length as
        #   the losses stream (or "table")
        losses.affix(meanloss=losses["loss"].mean(scan=100)).display()

        # Store all the losses in a list
        losslist = losses["loss"].accum()

        # Set a breakpoint whenever the loss is nan or infinite
        losses["loss"].filter(lambda loss: not math.isfinite(loss)).breakpoint()


        # Filter all the lines that have the "model" key:
        models = gv.where("model")

        # Write a checkpoint of the model at most once every 30 minutes
        models["model"].throttle(30 * 60).subscribe(
            lambda model: model.checkpoint()
        )

        # Watch with wandb, but only once at the very beginning
        models["model"].first() >> wandb.watch

        # Write the final model (you could also use models.last())
        models.where(final=True)["model"].subscribe(
            lambda model: model.save()
        )


        # ===========================================================
        # Finally, execute the code. All the pipelines we defined above
        # will proceed as we give data.
        # ===========================================================
        main()
Owner
Olivier Breuleux
Olivier Breuleux
Fancy console logger and wise assistant within your python projects

Fancy console logger and wise assistant within your python projects. Made to save tons of hours for common routines.

BoB 5 Apr 01, 2022
Python script to scan log files/system for unauthorized access around system

checkLogs Python script to scan log files/system for unauthorized access around Linux systems Table of contents General info Getting started Usage Gen

James Kelly 1 Feb 25, 2022
Logging system for the TPC software.

tpc_logger Logging system for the TPC software. The TPC Logger class provides a singleton for logging information within C++ code or in the python API

UC Davis Machine Learning 1 Jan 10, 2022
This is a DemoCode for parsing through large log files and triggering an email whenever there's an error.

LogFileParserDemoCode This is a DemoCode for parsing through large log files and triggering an email whenever there's an error. There are a total of f

2 Jan 06, 2022
Docker container log aggregation with Elasticsearch, Kibana & Filebeat

Epilog Dead simple container log aggregation with ELK stack Preface Epilog aims to demonstrate a language-agnostic, non-invasive, and straightfo

Redowan Delowar 23 Oct 26, 2022
A Prometheus exporter for monitoring & analyzing Grafana Labs' technical documentation

grafana-docs-exporter A Prometheus exporter for monitoring & analyzing Grafana Labs' technical documentation Here is the public endpoint.

Matt Abrams 5 May 02, 2022
Translating symbolicated Apple JSON format crash log into our old friends :)

CrashTranslation Translating symbolicated Apple JSON format crash log into our old friends :) Usage python3 translation.py -i {input_sybolicated_json_

Kam-To 11 May 16, 2022
Monitor creation, deletion and changes to LDAP objects live during your pentest or system administration!

LDAP Monitor Monitor creation, deletion and changes to LDAP objects live during your pentest or system administration! With this tool you can quickly

Podalirius 500 Dec 28, 2022
Keylogger with Python which logs words into server terminal.

word_logger Experimental keylogger with Python which logs words into server terminal.

Selçuk 1 Nov 15, 2021
Log processor for nginx or apache that extracts user and user sessions and calculates other types of useful data for bot detection or traffic analysis

Log processor for nginx or apache that extracts user and user sessions and calculates other types of useful data for bot detection or traffic analysis

David Puerta Martín 1 Nov 11, 2021
Track Nano accounts and notify via log file or email

nano-address-notifier Track accounts and notify via log file or email Required python libs

Joohansson (Json) 4 Nov 08, 2021
Structured Logging for Python

structlog makes logging in Python faster, less painful, and more powerful by adding structure to your log entries. It's up to you whether you want str

Hynek Schlawack 2.3k Jan 05, 2023
ScreenshotLogger works just like a keylogger but instead of capturing keystroke,it captures the screen, stores it or sends via email

ScreenshotLogger works just like a keylogger but instead of capturing keystroke,it captures the screen, stores it or sends via email. Scrapeasy is super easy to use and handles everything for you. Ju

Ifechukwudeni Oweh 17 Jul 17, 2022
A new kind of Progress Bar, with real time throughput, eta and very cool animations!

alive-progress :) A new kind of Progress Bar, with real-time throughput, eta and very cool animations! Ever found yourself in a remote ssh session, do

Rogério Sampaio de Almeida 4k Dec 30, 2022
Display tabular data in a visually appealing ASCII table format

PrettyTable Installation Install via pip: python -m pip install -U prettytable Install latest development version: python -m pip install -U git+https

Jazzband 924 Jan 05, 2023
Greppin' Logs: Leveling Up Log Analysis

This repo contains sample code and example datasets from Jon Stewart and Noah Rubin's presentation at the 2021 SANS DFIR Summit titled Greppin' Logs. The talk was centered around the idea that Forens

Stroz Friedberg 20 Sep 14, 2022
A Fast, Extensible Progress Bar for Python and CLI

tqdm tqdm derives from the Arabic word taqaddum (تقدّم) which can mean "progress," and is an abbreviation for "I love you so much" in Spanish (te quie

tqdm developers 23.7k Jan 01, 2023
A simple package that allows you to save inputs & outputs as .log files

wolf_dot_log A simple package that allows you to save inputs & outputs as .log files pip install wolf_dot_log pip3 install wolf_dot_log |Instructions|

Alpwuf 1 Nov 16, 2021
Debugging-friendly exceptions for Python

Better tracebacks This is a more helpful version of Python's built-in exception message: It shows more code context and the current values of nearby v

Clemens Korndörfer 1.2k Dec 28, 2022
Python logging package for easy reproducible experimenting in research

smilelogging Python logging package for easy reproducible experimenting in research. Why you may need this package This project is meant to provide an

Huan Wang 20 Dec 23, 2022