CenterNet:Objects as Points目标检测模型在Pytorch当中的实现

Overview

CenterNet:Objects as Points目标检测模型在Pytorch当中的实现


目录

  1. 性能情况 Performance
  2. 所需环境 Environment
  3. 注意事项 Attention
  4. 文件下载 Download
  5. 预测步骤 How2predict
  6. 训练步骤 How2train
  7. 参考资料 Reference

性能情况

训练数据集 权值文件名称 测试数据集 输入图片大小 mAP 0.5:0.95 mAP 0.5
VOC07+12 centernet_resnet50_voc.pth VOC-Test07 512x512 - 77.1
COCO-Train2017 centernet_hourglass_coco.pth COCO-Val2017 512x512 38.4 56.8

所需环境

torch==1.2.0

注意事项

代码中的centernet_resnet50_voc.pth是使用voc数据集训练的。
代码中的centernet_hourglass_coco.pth是使用coco数据集训练的。
注意不要使用中文标签,文件夹中不要有空格!
在训练前需要务必在model_data下新建一个txt文档,文档中输入需要分的类,在train.py中将classes_path指向该文件

文件下载

训练所需的centernet_resnet50_voc.pth、centernet_hourglass_coco.pth可在百度网盘中下载。
链接: https://pan.baidu.com/s/1QBBgRb_TH8kJdSCQGgcXmQ 提取码: phnc

centernet_resnet50_voc.pth是voc数据集的权重。
centernet_hourglass_coco.pth是coco数据集的权重。

预测步骤

a、使用预训练权重

  1. 下载完库后解压,在百度网盘下载centernet_resnet50_voc.pth或者centernet_hourglass_coco.pth,放入model_data,运行predict.py,输入
img/street.jpg
  1. 利用video.py可进行摄像头检测。

b、使用自己训练的权重

  1. 按照训练步骤训练。
  2. 在yolo.py文件里面,在如下部分修改model_path和classes_path使其对应训练好的文件;model_path对应logs文件夹下面的权值文件,classes_path是model_path对应分的类
_defaults = {
    "model_path"        : 'model_data/centernet_resnet50_voc.pth',
    "classes_path"      : 'model_data/voc_classes.txt',
    # "model_path"        : 'model_data/centernet_hourglass_coco.h5',
    # "classes_path"      : 'model_data/coco_classes.txt',
    "backbone"          : "resnet50",
    "image_size"        : [512,512,3],
    "confidence"        : 0.3,
    # backbone为resnet50时建议设置为True
    # backbone为hourglass时建议设置为False
    # 也可以根据检测效果自行选择
    "nms"               : True,
    "nms_threhold"      : 0.3,
    "cuda"              : True
}
  1. 运行predict.py,输入
img/street.jpg
  1. 利用video.py可进行摄像头检测。

训练步骤

  1. 本文使用VOC格式进行训练。
  2. 训练前将标签文件放在VOCdevkit文件夹下的VOC2007文件夹下的Annotation中。
  3. 训练前将图片文件放在VOCdevkit文件夹下的VOC2007文件夹下的JPEGImages中。
  4. 在训练前利用voc2centernet.py文件生成对应的txt。
  5. 再运行根目录下的voc_annotation.py,运行前需要将classes改成你自己的classes。注意不要使用中文标签,文件夹中不要有空格!
classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
  1. 此时会生成对应的2007_train.txt,每一行对应其图片位置及其真实框的位置
  2. 在训练前需要务必在model_data下新建一个txt文档,文档中输入需要分的类,在train.py中将classes_path指向该文件,示例如下:
classes_path = 'model_data/new_classes.txt'    

model_data/new_classes.txt文件内容为:

cat
dog
...
  1. 运行train.py即可开始训练。

mAP目标检测精度计算更新

更新了get_gt_txt.py、get_dr_txt.py和get_map.py文件。
get_map文件克隆自https://github.com/Cartucho/mAP
具体mAP计算过程可参考:https://www.bilibili.com/video/BV1zE411u7Vw

Reference

https://github.com/xuannianz/keras-CenterNet
https://github.com/see--/keras-centernet
https://github.com/xingyizhou/CenterNet

Comments
  • map指标

    map指标

    B导,我在使用get_map.py的时候,您的初始设置confidence为0.02,我正常得到map结果,但是我像其他网络一样把confidence修改成为0.001以后就得不到map结果了,这是为什么呢? 还有就是想问一下,在计算voc的map时,confidence都应该设置为很低,所以是不是0.02和0.001的效果相似?谢谢b导

    opened by ChristmasLee 2
  • 训练没有归一化,预测却有归一化,是不是有问题?

    训练没有归一化,预测却有归一化,是不是有问题?

    训练时候加载数据是dataloader.py 222行,是没有对图片做mean和std归一化的,但预测时predict.py -> centernet.py -> util/util.py -> preprocess_input里却对图片做了mean、std归一化,这应该有问题吧?

    opened by seven-linglx 2
  • 显示no mudule named 'past'

    显示no mudule named 'past'

    Traceback (most recent call last): File "train.py", line 15, in from utils.callbacks import LossHistory File "/root/centernet/centernet-pytorch-main/utils/callbacks.py", line 9, in from torch.utils.tensorboard import SummaryWriter File "/root/.local/lib/python3.7/site-packages/torch/utils/tensorboard/init.py", line 6, in from .writer import FileWriter, SummaryWriter # noqa F401 File "/root/.local/lib/python3.7/site-packages/torch/utils/tensorboard/writer.py", line 18, in from ._convert_np import make_np File "/root/.local/lib/python3.7/site-packages/torch/utils/tensorboard/_convert_np.py", line 12, in from caffe2.python import workspace File "/root/.local/lib/python3.7/site-packages/caffe2/python/workspace.py", line 15, in from past.builtins import basestring

    opened by buloseshi 1
  • 请问我改mobilenetv3的时候运行到第7批次就自动停止了是怎么回事呢

    请问我改mobilenetv3的时候运行到第7批次就自动停止了是怎么回事呢

    Finish Validation 0%| | 0/119 [00:00<?, ?it/s]Get map. 0%| | 0/119 [00:00<?, ?it/s] Traceback (most recent call last): File "/home/linux/data2/sun/centernet-pytorch-main/train.py", line 491, in epoch_step, epoch_step_val, gen, gen_val, UnFreeze_Epoch, Cuda, fp16, scaler, backbone, save_period, save_dir, local_rank) File "/home/linux/data2/sun/centernet-pytorch-main/utils/utils_fit.py", line 161, in fit_one_epoch eval_callback.on_epoch_end(epoch + 1, model_train) File "/home/linux/data2/sun/centernet-pytorch-main/utils/callbacks.py", line 211, in on_epoch_end self.get_map_txt(image_id, image, self.class_names, self.map_out_path) File "/home/linux/data2/sun/centernet-pytorch-main/utils/callbacks.py", line 145, in get_map_txt outputs = decode_bbox(outputs[0], outputs[1], outputs[2], self.confidence, self.cuda) IndexError: list index out of range

    opened by sunsn1997 2
  • 第一次尝试的新手提问

    第一次尝试的新手提问

    image

    按照readme文档中的步骤 1 已解压VOC数据集至项目根目录,pth文件至model_data目录 2 已修改voc_annotation.py 中的annotation_mode为2 3 运行train.py

    环境 pytorch1.2 + cuda10.0 +python3.6 ,Ubuntu 刚开始是使用的高版本torch和python,然后也尝试了python3.6+ torch1.2的环境,出现一样的问题

    opened by Xie-Muxi 1
Releases(v3.0)
  • v3.0(Apr 22, 2022)

    重要更新

    • 支持step、cos学习率下降法。
    • 支持adam、sgd优化器选择。
    • 支持学习率根据batch_size自适应调整。
    • 支持不同预测模式的选择,单张图片预测、文件夹预测、视频预测、图片裁剪、heatmap、各个种类目标数量计算。
    • 更新summary.py文件,用于观看网络结构。
    • 增加了多GPU训练。
    Source code(tar.gz)
    Source code(zip)
  • v2.0(Mar 4, 2022)

    重要更新

    • 更新train.py文件,增加了大量的注释,增加多个可调整参数。
    • 更新predict.py文件,增加了大量的注释,增加fps、视频预测、批量预测等功能。
    • 更新centernet.py文件,增加了大量的注释,增加先验框选择、置信度、非极大抑制等参数。
    • 合并get_dr_txt.py、get_gt_txt.py和get_map.py文件,通过一个文件来实现数据集的评估。
    • 更新voc_annotation.py文件,增加多个可调整参数。
    • 更新summary.py文件,用于观看网络结构。
    Source code(tar.gz)
    Source code(zip)
Owner
Bubbliiiing
Bubbliiiing
ICLR21 Tent: Fully Test-Time Adaptation by Entropy Minimization

⛺️ Tent: Fully Test-Time Adaptation by Entropy Minimization This is the official project repository for Tent: Fully-Test Time Adaptation by Entropy Mi

Dequan Wang 204 Dec 25, 2022
A robotic arm that mimics hand movement through MediaPipe tracking.

La-Z-Arm A robotic arm that mimics hand movement through MediaPipe tracking. Hardware NVidia Jetson Nano Sparkfun Pi Servo Shield Micro Servos Webcam

Alfred 1 Jun 05, 2022
Hydra: an Extensible Fuzzing Framework for Finding Semantic Bugs in File Systems

Hydra: An Extensible Fuzzing Framework for Finding Semantic Bugs in File Systems Paper Finding Semantic Bugs in File Systems with an Extensible Fuzzin

gts3.org (<a href=[email protected])"> 129 Dec 15, 2022
RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation

Multipath RefineNet A MATLAB based framework for semantic image segmentation and general dense prediction tasks on images. This is the source code for

Guosheng Lin 575 Dec 06, 2022
Tools for the Cleveland State Human Motion and Control Lab

Introduction This is a collection of tools that are helpful for gait analysis. Some are specific to the needs of the Human Motion and Control Lab at C

CSU Human Motion and Control Lab 88 Dec 16, 2022
ATAC: Adversarially Trained Actor Critic

ATAC: Adversarially Trained Actor Critic Adversarially Trained Actor Critic for Offline Reinforcement Learning by Ching-An Cheng*, Tengyang Xie*, Nan

Microsoft 41 Dec 08, 2022
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation Ported from https://github.com/hzwer/arXiv2020-RIFE Dependencies NumPy

49 Jan 07, 2023
ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

ManimML ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

259 Jan 04, 2023
MetaBalance: High-Performance Neural Networks for Class-Imbalanced Data

This repository is the official PyTorch implementation of Meta-Balance. Find the paper on arxiv MetaBalance: High-Performance Neural Networks for Clas

Arpit Bansal 20 Oct 18, 2021
Compare outputs between layers written in Tensorflow and layers written in Pytorch

Compare outputs of Wasserstein GANs between TensorFlow vs Pytorch This is our testing module for the implementation of improved WGAN in Pytorch Prereq

Hung Nguyen 72 Dec 20, 2022
Easy Parallel Library (EPL) is a general and efficient deep learning framework for distributed model training.

English | 简体中文 Easy Parallel Library Overview Easy Parallel Library (EPL) is a general and efficient library for distributed model training. Usability

Alibaba 185 Dec 21, 2022
An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models.

An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models. Hyperactive: is very easy to lear

Simon Blanke 422 Jan 04, 2023
HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation

HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation Official PyTroch implementation of HPRNet. HPRNet: Hierarchical Point Regre

Nermin Samet 53 Dec 04, 2022
PyTorch implementation of Super SloMo by Jiang et al.

Super-SloMo PyTorch implementation of "Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation" by Jiang H., Sun

Avinash Paliwal 2.9k Jan 03, 2023
Project of 'TBEFN: A Two-branch Exposure-fusion Network for Low-light Image Enhancement '

TBEFN: A Two-branch Exposure-fusion Network for Low-light Image Enhancement Codes for TMM20 paper "TBEFN: A Two-branch Exposure-fusion Network for Low

KUN LU 31 Nov 06, 2022
Generative Exploration and Exploitation - This is an improved version of GENE.

GENE This is an improved version of GENE. In the original version, the states are generated from the decoder of VAE. We have to check whether the gere

33 Mar 23, 2022
A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Note: This is an alpha (preview) version which is still under refining. nn-Meter is a novel and efficient system to accurately predict the inference l

Microsoft 244 Jan 06, 2023
Official code for "End-to-End Optimization of Scene Layout" -- including VAE, Diff Render, SPADE for colorization (CVPR 2020 Oral)

End-to-End Optimization of Scene Layout Code release for: End-to-End Optimization of Scene Layout CVPR 2020 (Oral) Project site, Bibtex For help conta

Andrew Luo 41 Dec 09, 2022
Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image

NonCuboidRoom Paper Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image Cheng Yang*, Jia Zheng*, Xili Dai, Rui Tang, Yi Ma, Xiao

67 Dec 15, 2022
Latte: Cross-framework Python Package for Evaluation of Latent-based Generative Models

Cross-framework Python Package for Evaluation of Latent-based Generative Models Latte Latte (for LATent Tensor Evaluation) is a cross-framework Python

Karn Watcharasupat 30 Sep 08, 2022