This library is an ongoing effort towards bringing the data exchanging ability between Java/Scala and Python

Overview

PyJava

This library is an ongoing effort towards bringing the data exchanging ability between Java/Scala and Python. PyJava introduces Apache Arrow as the exchanging data format, this means we can avoid ser/der between Java/Scala and Python which can really speed up the communication efficiency than traditional way.

When you invoke python code in Java/Scala side, PyJava will start some python workers automatically and send the data to python worker, and once they are processed, send them back. The python workers are reused
by default.

The initial code in this lib is from Apache Spark.

Install

Setup python(>= 3.6) Env(Conda is recommended):

pip uninstall pyjava && pip install pyjava

Setup Java env(Maven is recommended):

For Scala 2.11/Spark 2.4.3

<dependency>
    <groupId>tech.mlsqlgroupId>
    <artifactId>pyjava-2.4_2.11artifactId>
    <version>0.3.2version>
dependency>

For Scala 2.12/Spark 3.1.1

<dependency>
    <groupId>tech.mlsqlgroupId>
    <artifactId>pyjava-3.0_2.12artifactId>
    <version>0.3.2version>
dependency>

Build Mannually

Install Build Tool:

pip install mlsql_plugin_tool

Build for Spark 3.1.1:

mlsql_plugin_tool spark311
mvn clean install -DskipTests -Pdisable-java8-doclint -Prelease-sign-artifacts

Build For Spark 2.4.3

mlsql_plugin_tool spark243
mvn clean install -DskipTests -Pdisable-java8-doclint -Prelease-sign-artifacts

Using python code snippet to process data in Java/Scala

With pyjava, you can run any python code in your Java/Scala application.

sourceEnconder.toRow(irow).copy() }.iterator // run the code and get the return result val javaConext = new JavaContext val commonTaskContext = new AppContextImpl(javaConext, batch) val columnarBatchIter = batch.compute(Iterator(newIter), TaskContext.getPartitionId(), commonTaskContext) //f.copy(), copy function is required columnarBatchIter.flatMap { batch => batch.rowIterator.asScala }.foreach(f => println(f.copy())) javaConext.markComplete javaConext.close ">
val envs = new util.HashMap[String, String]()
// prepare python environment
envs.put(str(PythonConf.PYTHON_ENV), "source activate dev && export ARROW_PRE_0_15_IPC_FORMAT=1 ")

// describe the data which will be transfered to python 
val sourceSchema = StructType(Seq(StructField("value", StringType)))

val batch = new ArrowPythonRunner(
  Seq(ChainedPythonFunctions(Seq(PythonFunction(
    """
      |import pandas as pd
      |import numpy as np
      |
      |def process():
      |    for item in context.fetch_once_as_rows():
      |        item["value1"] = item["value"] + "_suffix"
      |        yield item
      |
      |context.build_result(process())
    """.stripMargin, envs, "python", "3.6")))), sourceSchema,
  "GMT", Map()
)

// prepare data
val sourceEnconder = RowEncoder.apply(sourceSchema).resolveAndBind()
val newIter = Seq(Row.fromSeq(Seq("a1")), Row.fromSeq(Seq("a2"))).map { irow =>
sourceEnconder.toRow(irow).copy()
}.iterator

// run the code and get the return result
val javaConext = new JavaContext
val commonTaskContext = new AppContextImpl(javaConext, batch)
val columnarBatchIter = batch.compute(Iterator(newIter), TaskContext.getPartitionId(), commonTaskContext)

//f.copy(), copy function is required 
columnarBatchIter.flatMap { batch =>
  batch.rowIterator.asScala
}.foreach(f => println(f.copy()))
javaConext.markComplete
javaConext.close

Using python code snippet to process data in Spark

val enconder = RowEncoder.apply(struct).resolveAndBind() val envs = new util.HashMap[String, String]() envs.put(str(PythonConf.PYTHON_ENV), "source activate streamingpro-spark-2.4.x") val batch = new ArrowPythonRunner( Seq(ChainedPythonFunctions(Seq(PythonFunction( """ |import pandas as pd |import numpy as np |for item in data_manager.fetch_once(): | print(item) |df = pd.DataFrame({'AAA': [4, 5, 6, 7],'BBB': [10, 20, 30, 40],'CCC': [100, 50, -30, -50]}) |data_manager.set_output([[df['AAA'],df['BBB']]]) """.stripMargin, envs, "python", "3.6")))), struct, timezoneid, Map() ) val newIter = iter.map { irow => enconder.toRow(irow) } val commonTaskContext = new SparkContextImp(TaskContext.get(), batch) val columnarBatchIter = batch.compute(Iterator(newIter), TaskContext.getPartitionId(), commonTaskContext) columnarBatchIter.flatMap { batch => batch.rowIterator.asScala.map(_.copy) } } val wow = SparkUtils.internalCreateDataFrame(session, abc, StructType(Seq(StructField("AAA", LongType), StructField("BBB", LongType))), false) wow.show() ">
val session = spark
import session.implicits._
val timezoneid = session.sessionState.conf.sessionLocalTimeZone
val df = session.createDataset[String](Seq("a1", "b1")).toDF("value")
val struct = df.schema
val abc = df.rdd.mapPartitions { iter =>
  val enconder = RowEncoder.apply(struct).resolveAndBind()
  val envs = new util.HashMap[String, String]()
  envs.put(str(PythonConf.PYTHON_ENV), "source activate streamingpro-spark-2.4.x")
  val batch = new ArrowPythonRunner(
    Seq(ChainedPythonFunctions(Seq(PythonFunction(
      """
        |import pandas as pd
        |import numpy as np
        |for item in data_manager.fetch_once():
        |    print(item)
        |df = pd.DataFrame({'AAA': [4, 5, 6, 7],'BBB': [10, 20, 30, 40],'CCC': [100, 50, -30, -50]})
        |data_manager.set_output([[df['AAA'],df['BBB']]])
      """.stripMargin, envs, "python", "3.6")))), struct,
    timezoneid, Map()
  )
  val newIter = iter.map { irow =>
    enconder.toRow(irow)
  }
  val commonTaskContext = new SparkContextImp(TaskContext.get(), batch)
  val columnarBatchIter = batch.compute(Iterator(newIter), TaskContext.getPartitionId(), commonTaskContext)
  columnarBatchIter.flatMap { batch =>
    batch.rowIterator.asScala.map(_.copy)
  }
}

val wow = SparkUtils.internalCreateDataFrame(session, abc, StructType(Seq(StructField("AAA", LongType), StructField("BBB", LongType))), false)
wow.show()

Run Python Project

With Pyjava, you can tell the system where is the python project and which is then entrypoint, then you can run this project in Java/Scala.

"/tmp/data", "tempModelLocalPath" -> "/tmp/model" )) output.foreach(println) ">
import tech.mlsql.arrow.python.runner.PythonProjectRunner

val runner = new PythonProjectRunner("./pyjava/examples/pyproject1", Map())
val output = runner.run(Seq("bash", "-c", "source activate dev && python train.py"), Map(
  "tempDataLocalPath" -> "/tmp/data",
  "tempModelLocalPath" -> "/tmp/model"
))
output.foreach(println)

Example In MLSQL

None Interactive Mode:

!python env "PYTHON_ENV=source activate streamingpro-spark-2.4.x";
!python conf "schema=st(field(a,long),field(b,long))";

select 1 as a as table1;

!python on table1 '''

import pandas as pd
import numpy as np
for item in data_manager.fetch_once():
    print(item)
df = pd.DataFrame({'AAA': [4, 5, 6, 8],'BBB': [10, 20, 30, 40],'CCC': [100, 50, -30, -50]})
data_manager.set_output([[df['AAA'],df['BBB']]])

''' named mlsql_temp_table2;

select * from mlsql_temp_table2 as output; 

Interactive Mode:

!python start;

!python env "PYTHON_ENV=source activate streamingpro-spark-2.4.x";
!python env "schema=st(field(a,integer),field(b,integer))";


!python '''
import pandas as pd
import numpy as np
''';

!python  '''
for item in data_manager.fetch_once():
    print(item)
df = pd.DataFrame({'AAA': [4, 5, 6, 8],'BBB': [10, 20, 30, 40],'CCC': [100, 50, -30, -50]})
data_manager.set_output([[df['AAA'],df['BBB']]])
''';
!python close;

Using PyJava as Arrow Server/Client

Java Server side:

enconder.toRow(irow) }.iterator val javaConext = new JavaContext val commonTaskContext = new AppContextImpl(javaConext, null) val Array(_, host, port) = socketRunner.serveToStreamWithArrow(newIter, dataSchema, 10, commonTaskContext) println(s"${host}:${port}") Thread.currentThread().join() ">
val socketRunner = new SparkSocketRunner("wow", NetUtils.getHost, "Asia/Harbin")

val dataSchema = StructType(Seq(StructField("value", StringType)))
val enconder = RowEncoder.apply(dataSchema).resolveAndBind()
val newIter = Seq(Row.fromSeq(Seq("a1")), Row.fromSeq(Seq("a2"))).map { irow =>
  enconder.toRow(irow)
}.iterator
val javaConext = new JavaContext
val commonTaskContext = new AppContextImpl(javaConext, null)

val Array(_, host, port) = socketRunner.serveToStreamWithArrow(newIter, dataSchema, 10, commonTaskContext)
println(s"${host}:${port}")
Thread.currentThread().join()

Python Client side:

import os
import socket

from pyjava.serializers import \
    ArrowStreamPandasSerializer

out_ser = ArrowStreamPandasSerializer(None, True, True)

out_ser = ArrowStreamPandasSerializer("Asia/Harbin", False, None)
HOST = ""
PORT = -1
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as sock:
    sock.connect((HOST, PORT))
    buffer_size = int(os.environ.get("SPARK_BUFFER_SIZE", 65536))
    infile = os.fdopen(os.dup(sock.fileno()), "rb", buffer_size)
    outfile = os.fdopen(os.dup(sock.fileno()), "wb", buffer_size)
    kk = out_ser.load_stream(infile)
    for item in kk:
        print(item)

Python Server side:

import os

import pandas as pd

os.environ["ARROW_PRE_0_15_IPC_FORMAT"] = "1"
from pyjava.api.serve import OnceServer

ddata = pd.DataFrame(data=[[1, 2, 3, 4], [2, 3, 4, 5]])

server = OnceServer("127.0.0.1", 11111, "Asia/Harbin")
server.bind()
server.serve([{'id': 9, 'label': 1}])

Java Client side:

println(enconder.fromRow(i.copy()))) javaConext.close ">
import org.apache.spark.sql.Row
import org.apache.spark.sql.catalyst.encoders.RowEncoder
import org.apache.spark.sql.types.{LongType, StringType, StructField, StructType}
import org.scalatest.{BeforeAndAfterAll, FunSuite}
import tech.mlsql.arrow.python.iapp.{AppContextImpl, JavaContext}
import tech.mlsql.arrow.python.runner.SparkSocketRunner
import tech.mlsql.common.utils.network.NetUtils

val enconder = RowEncoder.apply(StructType(Seq(StructField("a", LongType),StructField("b", LongType)))).resolveAndBind()
val socketRunner = new SparkSocketRunner("wow", NetUtils.getHost, "Asia/Harbin")
val javaConext = new JavaContext
val commonTaskContext = new AppContextImpl(javaConext, null)
val iter = socketRunner.readFromStreamWithArrow("127.0.0.1", 11111, commonTaskContext)
iter.foreach(i => println(enconder.fromRow(i.copy())))
javaConext.close

How to configure python worker runs in Docker (todo)

Owner
Byzer
Let data speak.
Byzer
Strawberry Benchmark With Python

Strawberry benchmarks these benchmarks have been made to compare the performance of dataloaders and joined database queries. How to use You can run th

Doctor 4 Feb 23, 2022
Uma versão em Python/Ursina do aplicativo Real Drum (android).

Real Drum Descrição Esta é uma versão alternativa feita em Python com a engine Ursina do aplicatio Real Drum (presente no Google Play Store). Como exe

hayukimori 5 Aug 20, 2022
Web3 Solidity Connector

With this project, you can compile your sol files and create new transactions including creating contract and calling the state changer functions. You can integrate integrate your sol files with Pyth

Fethi Tekyaygil 3 Oct 09, 2022
This is a pretty basic but relatively nice looking Python Pomodoro Timer.

Python Pomodoro-Timer This is a pretty basic but relatively nice looking Pomodoro Timer. Currently its set to a very basic mode, but the funcationalit

EmmHarris 2 Oct 18, 2021
Sardana integration into the Jupyter ecosystem.

sardana-jupyter Sardana integration into the Jupyter ecosystem.

Marc Espín 1 Dec 23, 2021
Understanding the field usage of any object in Salesforce

Understanding the field usage of any object in Salesforce One of the biggest problems that I have addressed while working with Salesforce is to unders

Sebastian Undurraga 1 Dec 14, 2021
JimShapedCoding Python Crash Course 2021

Python CRASH Course by JimShapedCoding - Click Here to Start! This Repository includes the code and MORE exercises on each section of the entire cours

Jim Erg 64 Dec 23, 2022
A New, Interactive Approach to Learning Python

This is the repository for The Python Workshop, published by Packt. It contains all the supporting project files necessary to work through the course from start to finish.

Packt Workshops 231 Dec 26, 2022
A simple and efficient computing package for Genshin Impact gacha analysis

GGanalysisLite计算包 这个版本的计算包追求计算速度,而GGanalysis包有着更多计算功能。 GGanalysisLite包通过卷积计算分布列,通过FFT和快速幂加速卷积计算。 测试玩家得到的排名值rank的数学意义是:与抽了同样数量五星的其他玩家相比,测试玩家花费的抽数大于等于比例

一棵平衡树 34 Nov 26, 2022
The Python agent for Apache SkyWalking

SkyWalking Python Agent SkyWalking-Python: The Python Agent for Apache SkyWalking, which provides the native tracing abilities for Python project. Sky

The Apache Software Foundation 149 Dec 12, 2022
Advanced Variable Manager {AVM} [0.8.0]

Advanced Variable Manager {AVM} [0.8.0] By Grosse pastèque#6705 WARNING : This modules need some typing modifications ! If you try to run it without t

Big watermelon 1 Dec 11, 2021
This wishes a mentioned users on their birthdays

BirthdayWisher Requirements: "mysqlserver", "email id and password", "Mysqlconnector" In-Built Modules: "smtplib", "datetime","imghdr" In Mysql: A tab

vellalaharshith 1 Sep 13, 2022
Kivy program for identification & rotation sensing of objects on multi-touch tables.

ObjectViz ObjectViz is a multitouch object detection solution, enabling you to create physical markers out of any reliable multitouch solution. It's e

TangibleDisplay 8 Apr 04, 2022
CEI Natural Disaster Tracking Portal

CEI Natural Disaster Tracking Portal (cc) Climatic Eye of ISCI We are an initiative that conducts studies in the field of Space Science, publishes pro

Baris Dincer 7 Dec 24, 2022
How to create the game Rock, Paper, Scissors in Python

Rock, Paper, Scissors! If you want to learn how to do interactive games using Python, then this is great start for you. In this code, You will learn h

SplendidSpidey 1 Dec 18, 2021
Python Osmium Examples

Python Osmium Examples This is a set (currently of size 1) of examples showing practical usage of PyOsmium, a thin wrapper around the osmium library.

Martijn van Exel 1 Jan 26, 2022
For when you really need to rank things

Comparisonator For when you really need to rank things. Do you know that feeling when there's this urge deep within you that tells you to compare thin

Maciej Wilczyński 1 Nov 01, 2021
Script that creates graphical representations of Julia an Mandelbrot sets.

Julia and Mandelbrot Picture Maker This simple functions create simple plots of the Julia and Mandelbrot sets. The Julia set require the important par

Juan Riera Gomez 1 Jan 10, 2022
Automate your Microsoft Learn Student Ambassadors event certificate with Python

Microsoft Learn Student Ambassador Certificate Automation This repo simply use a template certificate docx file and generates certificates both docx a

Muhammed Oğuz 24 Aug 24, 2022
uMap lets you create maps with OpenStreetMap layers in a minute and embed them in your site.

uMap project About uMap lets you create maps with OpenStreetMap layers in a minute and embed them in your site. Because we think that the more OSM wil

771 Dec 29, 2022