RuCLIP tiny (Russian Contrastive Language–Image Pretraining) is a neural network trained to work with different pairs (images, texts).

Overview

RuCLIPtiny

Zero-shot image classification model for Russian language


RuCLIP tiny (Russian Contrastive Language–Image Pretraining) is a neural network trained to work with different pairs (images, texts). Our model is based on ConvNeXt-tiny and DistilRuBert-tiny, and is supported by extensive research zero-shot transfer, computer vision, natural language processing, and multimodal learning.

Result evaluation

Our model achieved 46.62% top1 and 73.18% top5 zero-shot accuracy on CIFAR100

Examples

Open In Colab Evaluate & Simple usage

Open In Colab Finetuning

Open In Colab ONNX conversion and speed testing

Model weights

Usage

Install rucliptiny module and requirements first. Use this trick

!gdown -O ru-clip-tiny.pkl https://drive.google.com/uc?id=1-3g3J90pZmHo9jbBzsEmr7ei5zm3VXOL
!pip install git+https://github.com/cene555/ru-clip-tiny.git

Example in 3 steps

Download CLIP image from repo

!wget -c -O CLIP.png https://github.com/openai/CLIP/blob/main/CLIP.png?raw=true
  1. Import libraries
from rucliptiny.predictor import Predictor
from rucliptiny import RuCLIPtiny
import torch

torch.manual_seed(1)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
  1. Load model
model = RuCLIPtiny()
model.load_state_dict(torch.load('ru-clip-tiny.pkl'))
model = model.to(device).eval()
  1. Use predictor to get probabilities
predictor = Predictor()

classes = ['диаграмма', 'собака', 'кошка']
text_probs = predictor(model=model, images_path=["CLIP.png"],
                       classes=classes, get_probs=True,
                       max_len=77, device=device)

Cosine similarity Visualization Example

image

Speed Testing

NVIDIA Tesla K80 (Google Colab session)

TORCH batch encode_image encode_text total
RuCLIPtiny 2 0.011 0.004 0.015
RuCLIPtiny 8 0.011 0.004 0.015
RuCLIPtiny 16 0.012 0.005 0.017
RuCLIPtiny 32 0.014 0.005 0.019
RuCLIPtiny 64 0.013 0.006 0.019

We would like to express my gratitude to Sber AI for the grants provided, for which research was carried out, as part of the Artificial Intelligence International Junior Contest (AIIJC)

Owner
Shahmatov Arseniy
https://t.me/Cene655
Shahmatov Arseniy
EdiTTS: Score-based Editing for Controllable Text-to-Speech

Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech

Neosapience 99 Jan 02, 2023
KoBERT - Korean BERT pre-trained cased (KoBERT)

KoBERT KoBERT Korean BERT pre-trained cased (KoBERT) Why'?' Training Environment Requirements How to install How to use Using with PyTorch Using with

SK T-Brain 1k Jan 02, 2023
Unsupervised text tokenizer for Neural Network-based text generation.

SentencePiece SentencePiece is an unsupervised text tokenizer and detokenizer mainly for Neural Network-based text generation systems where the vocabu

Google 6.4k Jan 01, 2023
VD-BERT: A Unified Vision and Dialog Transformer with BERT

VD-BERT: A Unified Vision and Dialog Transformer with BERT PyTorch Code for the following paper at EMNLP2020: Title: VD-BERT: A Unified Vision and Dia

Salesforce 44 Nov 01, 2022
Sentence Embeddings with BERT & XLNet

Sentence Transformers: Multilingual Sentence Embeddings using BERT / RoBERTa / XLM-RoBERTa & Co. with PyTorch This framework provides an easy method t

Ubiquitous Knowledge Processing Lab 9.1k Jan 02, 2023
Contains descriptions and code of the mini-projects developed in various programming languages

TexttoSpeechAndLanguageTranslator-project introduction A pleasant application where the client will be given buttons like play,reset and exit. The cli

Adarsh Reddy 1 Dec 22, 2021
Line as a Visual Sentence: Context-aware Line Descriptor for Visual Localization

Line as a Visual Sentence with LineTR This repository contains the inference code, pretrained model, and demo scripts of the following paper. It suppo

SungHo Yoon 158 Dec 27, 2022
DeLighT: Very Deep and Light-Weight Transformers

DeLighT: Very Deep and Light-weight Transformers This repository contains the source code of our work on building efficient sequence models: DeFINE (I

Sachin Mehta 440 Dec 18, 2022
Negative sampling for solving the unlabeled entity problem in NER. ICLR-2021 paper: Empirical Analysis of Unlabeled Entity Problem in Named Entity Recognition.

Negative Sampling for NER Unlabeled entity problem is prevalent in many NER scenarios (e.g., weakly supervised NER). Our paper in ICLR-2021 proposes u

Yangming Li 128 Dec 29, 2022
A sample project that exists for PyPUG's "Tutorial on Packaging and Distributing Projects"

A sample Python project A sample project that exists as an aid to the Python Packaging User Guide's Tutorial on Packaging and Distributing Projects. T

Python Packaging Authority 4.5k Dec 30, 2022
Official Stanford NLP Python Library for Many Human Languages

Official Stanford NLP Python Library for Many Human Languages

Stanford NLP 6.4k Jan 02, 2023
Code from the paper "High-Performance Brain-to-Text Communication via Handwriting"

Code from the paper "High-Performance Brain-to-Text Communication via Handwriting"

Francis R. Willett 305 Dec 22, 2022
Count the frequency of letters or words in a text file and show a graph.

Word Counter By EBUS Coding Club Count the frequency of letters or words in a text file and show a graph. Requirements Python 3.9 or higher matplotlib

EBUS Coding Club 0 Apr 09, 2022
PyTorch implementation of the paper: Text is no more Enough! A Benchmark for Profile-based Spoken Language Understanding

Text is no more Enough! A Benchmark for Profile-based Spoken Language Understanding This repository contains the official PyTorch implementation of th

Xiao Xu 26 Dec 14, 2022
Extracting Summary Knowledge Graphs from Long Documents

GraphSum This repo contains the data and code for the G2G model in the paper: Extracting Summary Knowledge Graphs from Long Documents. The other basel

Zeqiu (Ellen) Wu 10 Oct 21, 2022
PortaSpeech - PyTorch Implementation

PortaSpeech - PyTorch Implementation PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech. Model Size Module Nor

Keon Lee 276 Dec 26, 2022
Skipgram Negative Sampling in PyTorch

PyTorch SGNS Word2Vec's SkipGramNegativeSampling in Python. Yet another but quite general negative sampling loss implemented in PyTorch. It can be use

Jamie J. Seol 287 Dec 14, 2022
NLPIR tutorial: pretrain for IR. pre-train on raw textual corpus, fine-tune on MS MARCO Document Ranking

pretrain4ir_tutorial NLPIR tutorial: pretrain for IR. pre-train on raw textual corpus, fine-tune on MS MARCO Document Ranking 用作NLPIR实验室, Pre-training

ZYMa 12 Apr 07, 2022
A multi-lingual approach to AllenNLP CoReference Resolution along with a wrapper for spaCy.

Crosslingual Coreference Coreference is amazing but the data required for training a model is very scarce. In our case, the available training for non

Pandora Intelligence 71 Jan 04, 2023
A complete NLP guideline for enthusiasts

NLP-NINJA A complete guide for Natural Language Processing in Python Table of Contents S.No. Topic Level Meaning 1 Tokenization 🤍 Beginner 2 Stemming

MAINAK CHAUDHURI 22 Dec 27, 2022