TLA - Twitter Linguistic Analysis

Related tags

Text Data & NLPTLA
Overview

TLA - Twitter Linguistic Analysis

Tool for linguistic analysis of communities

TLA is built using PyTorch, Transformers and several other State-of-the-Art machine learning techniques and it aims to expedite and structure the cumbersome process of collecting, labeling, and analyzing data from Twitter for a corpus of languages while providing detailed labeled datasets for all the languages. The analysis provided by TLA will also go a long way in understanding the sentiments of different linguistic communities and come up with new and innovative solutions for their problems based on the analysis. List of languages our library provides support for are listed as follows:

Language Code Language Code
English en Hindi hi
Swedish sv Thai th
Dutch nl Japanese ja
Turkish tr Urdu ur
Indonesian id Portuguese pt
French fr Chinese zn-ch
Spanish es Persian fa
Romainain ro Russian ru

Features

  • Provides 16 labeled Datasets for different languages for analysis.
  • Implements Bert based architecture to identify languages.
  • Provides Functionalities to Extract,process and label tweets from twitter.
  • Provides a Random Forest classifier to implement sentiment analysis on any string.

Installation :

pip install --upgrade https://github.com/tusharsarkar3/TLA.git

Overview

Extract data
from TLA.Data.get_data import store_data
store_data('en',False)

This will extract and store the unlabeled data in a new directory inside data named datasets.

Label data
from TLA.Datasets.get_lang_data import language_data
df = language_data('en')
print(df)

This will print the labeled data that we have already collected.

Classify languages
Training

Training can be done in the following way:

from TLA.Lang_Classify.train import train_lang
train_lang(path_to_dataset,epochs)
Prediction

Inference is done in the following way:

from TLA.Lang_Classify.predict import predict
model = get_model(path_to_weights)
preds = predict(dataframe_to_be_used,model)
Analyse
Training

Training can be done in the following way:

from TLA.Analyse.train_rf import train_rf
train_rf(path_to_dataset)

This will store all the vectorizers and models in a seperate directory named saved_rf and saved_vec and they are present inside Analysis directory. Further instructions for training multiple languages is given in the next section which shows how to run the commands using CLI

Final Analysis

Analysis is done in the following way:

from TLA.Analysis.analyse import analyse_data 
analyse_data(path_to_weights)

This will store the final analysis as .csv inside a new directory named analysis.

Overview with Git

Installation another method
git clone https://github.com/tusharsarkar3/TLA.git
Extract data Navigate to the required directory
cd Data

Run the following command:

python get_data.py --lang en --process True

Lang flag is used to input the language of the dataset that is required and process flag shows where pre-processing should be done before returning the data. Give the following codes in the lang flag wrt the required language:

Loading Dataset

To load a dataset run the following command in python.

df= pd.read_csv("TLA/TLA/Datasets/get_data_en.csv")
 

The command will return a dataframe consisting of the data for the specific language requested.

In the phrase get_data_en, en can be sunstituted by the desired language code to load the dataframe for the specific language.

Pre-Processing

To preprocess a given string run the following command.

In your terminal use code

cd Data

then run the command in python

from TLA.Data import Pre_Process_Tweets

df=Pre_Process_Tweets.pre_process_tweet(df)

Here the function pre_process_tweet takes an input as a dataframe of tweets and returns an output of a dataframe with the list of preprocessed words for a particular tweet next to the tweet in the dataframe.

Analysis Training To train a random forest classifier for the purpose of sentiment analysis run the following command in your terminal.
cd Analysis

then

python train.rf --path "path to your datafile" --train_all_datasets False

here the --path flag represents the path to the required dataset you want to train the Random Forest Classifier on the --train_all_datasets flag is a boolean which can be used to train the model on multiple datasets at once.

The output is a file with the a .pkl file extention saved in the folder at location "TLA\Analysis\saved_rf{}.pkl" The output for vectorization of is stored in a .pkl file in the directory "TLA\Analysis\saved_vec{}.pkl"

Get Sentiment

To get the sentiment of any string use the following code.

In your terminal type

cd Analysis

then in your terminal type

python get_sentiment.py --prediction "Your string for prediction to be made upon" --lang "en"

here the --prediction flag collects the string for which you want to get the sentiment for. the --lang represents the language code representing the language you typed your string in.

The output is a sentiment which is either positive or negative depending on your string.

Statistics

To get a comprehensive statistic on sentiment of datasets run the following command.

In your terminal type

cd Analysis

then

python analyse.py 

This will give you an output of a table1.csv file at the location 'TLA\Analysis\analysis\table1.csv' comprising of statistics relating to the percentage of positive or negative tweets for a given language dataset.

It will also give a table2.csv file at 'TLA\Analysis\analysis\table2.csv' comprising of statistics for all languages combined.

Language Classification Training To train a model for language classfication on a given dataset run the following commands.

In your terminal run

cd Lang_Classify

then run

python train.py --data "path for your dataset" --model "path to weights if pretrained" --epochs 4

The --data flag requires the path to your training dataset.

The --model flag requires the path to the model you want to implement

The --epoch flag represents the epochs you want to train your model for.

The output is a file with a .pt extention named saved_wieghts_full.pt where your trained wieghst are stored.

Prediction To make prediction on any given string Us ethe following code.

In your terminal type

cd Lang_Classify

then run the code

python predict.py --predict "Text/DataFrame for language to predicted" --weights " Path for the stored weights of your model " 

The --predict flag requires the string you want to get the language for.

The --wieghts flag is the path for the stored wieghts you want to run your model on to make predictions.

The outputs is the language your string was typed in.


Results:

img

Performance of TLA ( Loss vs epochs)

Language Total tweets Positive Tweets Percentage Negative Tweets Percentage
English 500 66.8 33.2
Spanish 500 61.4 38.6
Persian 50 52 48
French 500 53 47
Hindi 500 62 38
Indonesian 500 63.4 36.6
Japanese 500 85.6 14.4
Dutch 500 84.2 15.8
Portuguese 500 61.2 38.8
Romainain 457 85.55 14.44
Russian 213 62.91 37.08
Swedish 420 80.23 19.76
Thai 424 71.46 28.53
Turkish 500 67.8 32.2
Urdu 42 69.04 30.95
Chinese 500 80.6 19.4

Reference:

@misc{sarkar2021tla,
     title={TLA: Twitter Linguistic Analysis}, 
     author={Tushar Sarkar and Nishant Rajadhyaksha},
     year={2021},
     eprint={2107.09710},
     archivePrefix={arXiv},
     primaryClass={cs.CL}
}
@misc{640cba8b-35cb-475e-ab04-62d079b74d13,
 title = {TLA: Twitter Linguistic Analysis},
 author = {Tushar Sarkar and Nishant Rajadhyaksha},
  journal = {Software Impacts},
 doi = {10.24433/CO.6464530.v1}, 
 howpublished = {\url{https://www.codeocean.com/}},
 year = 2021,
 month = {6},
 version = {v1}
}

Features to be added :

  • Access to more language
  • Creating GUI based system for better accesibility
  • Improving performance of the baseline model

Developed by Tushar Sarkar and Nishant Rajadhyaksha

Owner
Tushar Sarkar
I love solving problems with data
Tushar Sarkar
voice2json is a collection of command-line tools for offline speech/intent recognition on Linux

Command-line tools for speech and intent recognition on Linux

Michael Hansen 988 Jan 04, 2023
pysentimiento: A Python toolkit for Sentiment Analysis and Social NLP tasks

A Python multilingual toolkit for Sentiment Analysis and Social NLP tasks

297 Dec 29, 2022
A programming language with logic of Python, and syntax of all languages.

Pytov The idea was to take all well known syntaxes, and combine them into one programming language with many posabilities. Installation Install using

Yuval Rosen 14 Dec 07, 2022
Unsupervised text tokenizer focused on computational efficiency

YouTokenToMe YouTokenToMe is an unsupervised text tokenizer focused on computational efficiency. It currently implements fast Byte Pair Encoding (BPE)

VK.com 847 Dec 19, 2022
Dé op-de-vlucht Pieton vertaler. Wereldwijd gebruikt door meer dan 1.000+ succesvolle bedrijven!

Dé op-de-vlucht Pieton vertaler. Wereldwijd gebruikt door meer dan 1.000+ succesvolle bedrijven!

Lau 1 Dec 17, 2021
Code for evaluating Japanese pretrained models provided by NTT Ltd.

japanese-dialog-transformers 日本語の説明文はこちら This repository provides the information necessary to evaluate the Japanese Transformer Encoder-decoder dialo

NTT Communication Science Laboratories 216 Dec 22, 2022
State-of-the-art NLP through transformer models in a modular design and consistent APIs.

Trapper (Transformers wRAPPER) Trapper is an NLP library that aims to make it easier to train transformer based models on downstream tasks. It wraps h

Open Business Software Solutions 42 Sep 21, 2022
Transformer-based Text Auto-encoder (T-TA) using TensorFlow 2.

T-TA (Transformer-based Text Auto-encoder) This repository contains codes for Transformer-based Text Auto-encoder (T-TA, paper: Fast and Accurate Deep

Jeong Ukjae 13 Dec 13, 2022
A Transformer Implementation that is easy to understand and customizable.

Simple Transformer I've written a series of articles on the transformer architecture and language models on Medium. This repository contains an implem

Naoki Shibuya 4 Jan 20, 2022
CoNLL-English NER Task (NER in English)

CoNLL-English NER Task en | ch Motivation Course Project review the pytorch framework and sequence-labeling task practice using the transformers of Hu

Kevin 2 Jan 14, 2022
PRAnCER is a web platform that enables the rapid annotation of medical terms within clinical notes.

PRAnCER (Platform enabling Rapid Annotation for Clinical Entity Recognition) is a web platform that enables the rapid annotation of medical terms within clinical notes. A user can highlight spans of

Sontag Lab 39 Nov 14, 2022
Unofficial Python library for using the Polish Wordnet (plWordNet / Słowosieć)

Polish Wordnet Python library Simple, easy-to-use and reasonably fast library for using the Słowosieć (also known as PlWordNet) - a lexico-semantic da

Max Adamski 12 Dec 23, 2022
A Chinese to English Neural Model Translation Project

ZH-EN NMT Chinese to English Neural Machine Translation This project is inspired by Stanford's CS224N NMT Project Dataset used in this project: News C

Zhenbang Feng 29 Nov 26, 2022
Implementation of some unbalanced loss like focal_loss, dice_loss, DSC Loss, GHM Loss et.al

Implementation of some unbalanced loss for NLP task like focal_loss, dice_loss, DSC Loss, GHM Loss et.al Summary Here is a loss implementation reposit

121 Jan 01, 2023
Use PaddlePaddle to reproduce the paper:mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer

MT5_paddle Use PaddlePaddle to reproduce the paper:mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer English | 简体中文 mT5: A Massively

2 Oct 17, 2021
FewCLUE: 为中文NLP定制的小样本学习测评基准

FewCLUE: 为中文NLP定制的小样本学习测评基准

CLUE benchmark 387 Jan 04, 2023
End-to-End Speech Processing Toolkit

ESPnet: end-to-end speech processing toolkit system/pytorch ver. 1.0.1 1.1.0 1.2.0 1.3.1 1.4.0 1.5.1 1.6.0 1.7.1 1.8.1 ubuntu18/python3.8/pip ubuntu18

ESPnet 5.9k Jan 03, 2023
Pytorch implementation of Tacotron

Tacotron-pytorch A pytorch implementation of Tacotron: A Fully End-to-End Text-To-Speech Synthesis Model. Requirements Install python 3 Install pytorc

soobin seo 203 Dec 02, 2022