pcnaDeep integrates cutting-edge detection techniques with tracking and cell cycle resolving models.

Overview

pcnaDeep: a deep-learning based single-cell cycle profiler with PCNA signal

Welcome! pcnaDeep integrates cutting-edge detection techniques with tracking and cell cycle resolving models. Using the Mask R-CNN model under FAIR's Detectron2 framework, pcnaDeep is able to detect and resolve very dense cell tracks with PCNA fluorescence.

overview

Installation

  1. PyTorch (torch >= 1.7.1) installation and CUDA GPU support are essential. Visit PyTorch homepage for specific installation schedule.
  2. Install modified Detectron2 v0.4 in this directory (original package homepage)
       cd detectron2-04_mod
       pip install .
    
    • In pcnaDeep, the detectron2 v0.4 dependency has been modified in two ways:
      1. To generate confidence score output of the instance classification, the method detectron2.modeling.roi_heads.fast_rcnn.fast_rcnn_inference_single_image has been modified.
      2. A customized dataset mapper function has been implemented as detectron2.data.dataset_mapper.read_PCNA_training.
    • To build Detectron2 on Windows may require the following change of torch package, if your torch version is old. Reference (Chinese).
       In torch\include\torch\csrc\jit\argument_spec.h,
       static constexpr size_t DEPTH_LIMIT = 128;
          change to -->
       static const size_t DEPTH_LIMIT = 128;
    
  3. Install pcnaDeep from source in this directory
    cd bin
    python setup.py install
    
  4. (optional, for training data annotation only) Download VGG Image Annotator 2 software.
  5. (optional, for visualisation only) Install Fiji (ImageJ) with TrackMate CSV Importer plugin.

Download pre-trained Mask R-CNN weights

The Mask R-CNN is trained on 60X microscopic images sized 1200X1200 square pixels. Download here.

You must download pre-trained weights and save it under ~/models/ for running tutorials.

Getting started

See a quick tutorial to get familiar with pcnaDeep.

You may also go through other tutorials for advanced usages.

API Documentation

API documentation is available here.

Reference

Please cite our paper if you found this package useful.

pcnaDeep: A Fast and Robust Single-Cell Tracking Method Using Deep-Learning Mediated Cell Cycle Profiling
Yifan Gui, Shuangshuang Xie, Yanan Wang, Ping Wang, Renzhi Yao, Xukai Gao, Yutian Dong, Gaoang Wang, Kuan Yoow Chan
bioRxiv 2021.09.19.460933; doi: https://doi.org/10.1101/2021.09.19.460933

Licence

pcnaDeep is released under the Apache 2.0 license.

Owner
ChanLab
Github repository for Chan Lab
ChanLab
ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

Sign-Agnostic Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page This repository contains the implementation

63 Nov 18, 2022
CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Selection

CIFS This repository provides codes for CIFS (ICML 2021). CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Sel

Hanshu YAN 19 Nov 12, 2022
Implementation of gaze tracking and demo

Predicting Customer Demand by Using Gaze Detecting and Object Tracking This project is the integration of gaze detecting and object tracking. Predict

2 Oct 20, 2022
Run object detection model on the Raspberry Pi

Using TensorFlow Lite with Python is great for embedded devices based on Linux, such as Raspberry Pi.

Dimitri Yanovsky 6 Oct 08, 2022
Code release for paper: The Boombox: Visual Reconstruction from Acoustic Vibrations

The Boombox: Visual Reconstruction from Acoustic Vibrations Boyuan Chen, Mia Chiquier, Hod Lipson, Carl Vondrick Columbia University Project Website |

Boyuan Chen 12 Nov 30, 2022
A PyTorch implementation of "From Two to One: A New Scene Text Recognizer with Visual Language Modeling Network" (ICCV2021)

From Two to One: A New Scene Text Recognizer with Visual Language Modeling Network The official code of VisionLAN (ICCV2021). VisionLAN successfully a

81 Dec 12, 2022
Functional deep learning

Pipeline abstractions for deep learning. Full documentation here: https://lf1-io.github.io/padl/ PADL: is a pipeline builder for PyTorch. may be used

LF1 101 Nov 09, 2022
Code for the CVPR2021 paper "Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition"

Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition This repository contains code for the CVPR2021 paper "Patch-NetV

QVPR 368 Jan 06, 2023
Python library for loading and using triangular meshes.

Trimesh is a pure Python (2.7-3.4+) library for loading and using triangular meshes with an emphasis on watertight surfaces. The goal of the library i

Michael Dawson-Haggerty 2.2k Jan 07, 2023
Unsupervised Image Generation with Infinite Generative Adversarial Networks

Unsupervised Image Generation with Infinite Generative Adversarial Networks Here is the implementation of MICGANs using DCGAN architecture on MNIST da

16 Dec 24, 2021
RaceBERT -- A transformer based model to predict race and ethnicty from names

RaceBERT -- A transformer based model to predict race and ethnicty from names Installation pip install racebert Using a virtual environment is highly

Prasanna Parasurama 3 Nov 02, 2022
PyTorch Lightning + Hydra. A feature-rich template for rapid, scalable and reproducible ML experimentation with best practices. ⚡🔥⚡

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Łukasz Zalewski 2.1k Jan 09, 2023
Code for testing convergence rates of Lipschitz learning on graphs

📈 LipschitzLearningRates The code in this repository reproduces the experimental results on convergence rates for k-nearest neighbor graph infinity L

2 Dec 20, 2021
Code for Deep Single-image Portrait Image Relighting

Deep Single-Image Portrait Relighting [Project Page] Hao Zhou, Sunil Hadap, Kalyan Sunkavalli, David W. Jacobs. In ICCV, 2019 Overview Test script for

438 Jan 05, 2023
The official implementation of Equalization Loss for Long-Tailed Object Recognition (CVPR 2020) based on Detectron2

Equalization Loss for Long-Tailed Object Recognition Jingru Tan, Changbao Wang, Buyu Li, Quanquan Li, Wanli Ouyang, Changqing Yin, Junjie Yan ⚠️ We re

Jingru Tan 197 Dec 25, 2022
YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with ONNX, TensorRT, ncnn, and OpenVINO supported.

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

7.7k Jan 03, 2023
An implementation of the efficient attention module.

Efficient Attention An implementation of the efficient attention module. Description Efficient attention is an attention mechanism that substantially

Shen Zhuoran 194 Dec 15, 2022
Data loaders and abstractions for text and NLP

torchtext This repository consists of: torchtext.datasets: The raw text iterators for common NLP datasets torchtext.data: Some basic NLP building bloc

3.2k Jan 08, 2023
PyTorch code for 'Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning'

Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning This repository is for EMSRDPN introduced in the foll

7 Feb 10, 2022