(CVPR 2021) Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds

Related tags

Deep LearningBRNet
Overview

BRNet

fig_overview-c2

Introduction

This is a release of the code of our paper Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds, CVPR 2021.

Authors: Bowen Cheng, Lu Sheng*, Shaoshuai Shi, Ming Yang, Dong Xu (*corresponding author)

[arxiv]

In this repository, we reimplement BRNet based on mmdetection3d for easier usage.

Citation

If you find our work useful in your research, please consider citing:

@inproceedings{cheng2021brnet,
  title={Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds},
  author={Cheng, Bowen and Sheng, Lu and Shi, Shaoshuai and Yang, Ming and Xu, Dong},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year={2021}
}

Installation

This repo is built based on mmdetection3d (V0.11.0), please follow the getting_started.md for installation.

The code is tested under the following environment:

  • Ubuntu 16.04 LTS
  • Python 3.7.10
  • Pytorch 1.5.0
  • CUDA 10.1
  • GCC 7.3

Datasets

ScanNet

Please follow the instruction here to prepare ScanNet Data.

SUN RGB-D

Please follow the instruction here to prepare SUN RGB-D Data.

Download Trained Models

We provide the trained models of ScanNet and SUN RGB-D with per-class performances.

ScanNet V2 AP_0.25 AR_0.25 AP_0.50 AR_0.50
cabinet 0.4898 0.7634 0.2800 0.5349
bed 0.8849 0.9506 0.7915 0.8642
chair 0.9149 0.9357 0.8354 0.8604
sofa 0.9049 0.9794 0.8027 0.9278
table 0.6802 0.8486 0.6146 0.7600
door 0.5955 0.7430 0.3721 0.5418
window 0.4814 0.7092 0.2405 0.4078
bookshelf 0.5876 0.8701 0.5032 0.7532
picture 0.1716 0.3243 0.0687 0.1396
counter 0.6085 0.8846 0.3545 0.5385
desk 0.7538 0.9528 0.5481 0.7874
curtain 0.6275 0.7910 0.4126 0.5224
refrigerator 0.5467 0.9474 0.4882 0.8070
showercurtrain 0.7349 0.9643 0.5189 0.6786
toilet 0.9896 1.0000 0.9227 0.9310
sink 0.5901 0.6735 0.3521 0.4490
bathtub 0.8605 0.9355 0.8565 0.9032
garbagebin 0.4726 0.7151 0.3169 0.5170
Overall 0.6608 0.8327 0.5155 0.6624
SUN RGB-D AP_0.25 AR_0.25 AP_0.50 AR_0.50
bed 0.8633 0.9553 0.6544 0.7592
table 0.5136 0.8552 0.2981 0.5268
sofa 0.6754 0.8931 0.5830 0.7193
chair 0.7864 0.8723 0.6301 0.7137
toilet 0.8699 0.9793 0.7125 0.8345
desk 0.2929 0.8082 0.1134 0.4017
dresser 0.3237 0.7615 0.2058 0.4954
night_stand 0.5933 0.8627 0.4490 0.6588
bookshelf 0.3394 0.7199 0.1574 0.3652
bathtub 0.7505 0.8776 0.5383 0.6531
Overall 0.6008 0.8585 0.4342 0.6128

Note: Due to the detection results are unstable and fluctuate within 1~2 mAP points, the results here are slightly different from those in the paper.

Training

For ScanNet V2, please run:

CUDA_VISIBLE_DEVICES=0 python tools/train.py configs/brnet/brnet_8x1_scannet-3d-18class.py --seed 42

For SUN RGB-D, please run:

CUDA_VISIBLE_DEVICES=0 python tools/train.py configs/brnet/brnet_8x1_sunrgbd-3d-10class.py --seed 42

Demo

To test a 3D detector on point cloud data, please refer to Single modality demo and Point cloud demo in MMDetection3D docs.

Here, we provide a demo on SUN RGB-D dataset.

CUDA_VISIBLE_DEVICES=0 python demo/pcd_demo.py sunrgbd_000094.bin demo/brnet_8x1_sunrgbd-3d-10class.py checkpoints/brnet_8x1_sunrgbd-3d-10class_trained.pth

Visualization results

ScanNet

SUN RGB-D

Acknowledgments

Our code is heavily based on mmdetection3d. Thanks mmdetection3d Development Team for their awesome codebase.

Malware Env for OpenAI Gym

Malware Env for OpenAI Gym Citing If you use this code in a publication please cite the following paper: Hyrum S. Anderson, Anant Kharkar, Bobby Fila

ENDGAME 563 Dec 29, 2022
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation

Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train

Adelaide Intelligent Machines (AIM) Group 7 Sep 12, 2022
LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection

LiDAR Distillation Paper | Model LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection Yi Wei, Zibu Wei, Yongming Rao, Jiax

Yi Wei 75 Dec 22, 2022
A Number Recognition algorithm

Paddle-VisualAttention Results_Compared SVHN Dataset Methods Steps GPU Batch Size Learning Rate Patience Decay Step Decay Rate Training Speed (FPS) Ac

1 Nov 12, 2021
A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation.

TiSASRec.paddle A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation. Introduction 论文:Time Interval Aware Sel

Paddorch 2 Nov 28, 2021
Customer Segmentation using RFM

Customer-Segmentation-using-RFM İş Problemi Bir e-ticaret şirketi müşterilerini segmentlere ayırıp bu segmentlere göre pazarlama stratejileri belirlem

Nazli Sener 7 Dec 26, 2021
Official Pytorch implementation of the paper "Action-Conditioned 3D Human Motion Synthesis with Transformer VAE", ICCV 2021

ACTOR Official Pytorch implementation of the paper "Action-Conditioned 3D Human Motion Synthesis with Transformer VAE", ICCV 2021. Please visit our we

Mathis Petrovich 248 Dec 23, 2022
Official code for "Maximum Likelihood Training of Score-Based Diffusion Models", NeurIPS 2021 (spotlight)

Maximum Likelihood Training of Score-Based Diffusion Models This repo contains the official implementation for the paper Maximum Likelihood Training o

Yang Song 84 Dec 12, 2022
Pytorch library for seismic data augmentation

Pytorch library for seismic data augmentation

Artemii Novoselov 27 Nov 22, 2022
Official pytorch implementation of DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces

DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces Minhyuk Sung*, Zhenyu Jiang*, Panos Achlioptas, Niloy J. Mitra, Leonidas

Zhenyu Jiang 21 Aug 30, 2022
A symbolic-model-guided fuzzer for TLS

tlspuffin TLS Protocol Under FuzzINg A symbolic-model-guided fuzzer for TLS Master Thesis | Thesis Presentation | Documentation Disclaimer: The term "

69 Dec 20, 2022
OOD Generalization and Detection (ACL 2020)

Pretrained Transformers Improve Out-of-Distribution Robustness How does pretraining affect out-of-distribution robustness? We create an OOD benchmark

littleRound 57 Jan 09, 2023
CDGAN: Cyclic Discriminative Generative Adversarial Networks for Image-to-Image Transformation

CDGAN CDGAN: Cyclic Discriminative Generative Adversarial Networks for Image-to-Image Transformation CDGAN Implementation in PyTorch This is the imple

Kancharagunta Kishan Babu 6 Apr 19, 2022
An open-source online reverse dictionary.

An open-source online reverse dictionary.

THUNLP 6.3k Jan 09, 2023
Code repository for paper `Skeleton Merger: an Unsupervised Aligned Keypoint Detector`.

Skeleton Merger Skeleton Merger, an Unsupervised Aligned Keypoint Detector. The paper is available at https://arxiv.org/abs/2103.10814. A map of the r

北海若 48 Nov 14, 2022
The implementation of the lifelong infinite mixture model

Lifelong infinite mixture model 📋 This is the implementation of the Lifelong infinite mixture model 📋 Accepted by ICCV 2021 Title : Lifelong Infinit

Fei Ye 5 Oct 20, 2022
Code for the paper Hybrid Spectrogram and Waveform Source Separation

Demucs Music Source Separation This is the 3rd release of Demucs (v3), featuring hybrid source separation. For the waveform only Demucs (v2): Go this

Meta Research 4.8k Jan 04, 2023
PyTorch implementation of Lip to Speech Synthesis with Visual Context Attentional GAN (NeurIPS2021)

Lip to Speech Synthesis with Visual Context Attentional GAN This repository contains the PyTorch implementation of the following paper: Lip to Speech

6 Nov 02, 2022
Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

NVIDIA Research Projects 4.8k Jan 09, 2023
Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images

BlockGAN Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images BlockGAN: Learning 3D Object-aware Scene Rep

41 May 18, 2022