Estimating Example Difficulty using Variance of Gradients

Overview

Estimating Example Difficulty using Variance of Gradients

This repository contains source code necessary to reproduce some of the main results in the paper:

If you use this software, please consider citing:

@article{agarwal2020estimating, 
title={Estimating Example Difficulty using Variance of Gradients},
author={Agarwal, Chirag and Hooker, Sara},
journal={arXiv preprint arXiv:2008.11600},
year={2020}
}

1. Setup

Installing software

This repository is built using a combination of TensorFlow and PyTorch. You can install the necessary libraries by pip installing the requirements text file pip install -r ./requirements_tf.txt and pip install -r ./requirements_pytorch.txt

2. Usage

Toy experiment

toy_script.py is the script for running toy dataset experiment. You can analyze the training/testing data at diffferent stages of the training, viz. Early, Middle, and Late, using the flags split and mode. The vog_cal flag enables visualizing different versions of VOG scores such as the raw score, class normalized, or the absolute class normalized scores.

Examples

Running python3 toy_script.py --split test --mode early --vog_cal normalize generates the toy dataset decision boundary figure along with the relation between the perpendicular distance of individual points from the decision boundary and the VOG scores. The respective figures are:

Left: The visualization of the toy dataset decision boundary with the testing data points. The Multiple Layer Perceptron model achieves 100% training accuracy. Right: The scatter plot between the Variance of Gradients (VoGs) for each testing data point and their perpendicular distance shows that higher scores pertain to the most challenging examples (closest to the decision boundary)

ImageNet

The main scripts for the ImageNet experiments are in the ./imagenet/ folder.

  1. Before calculating the VOG scores you would need to store the gradients of the respective images in the ./scripts/train.txt/ file using model snapshots. For demonstration purpose, we have shared the model weights of the late stage, i.e. steps 30024, 31275, and 32000. Now, for example, we want to store the gradients for the imagenet dataset (stored as /imagenet_dir/train) at snapshot 32000, we run the shell script train_get_gradients.sh like:

source train_get_gradients.sh 32000 ./imagenet/train_results/ 9 ./scripts/train.txt/

  1. For this repo, we have generated the gradients for 100 random images for the late stage training process and stored the results in ./imagenet/train_results/. To generate the error rate performance at different VOG deciles run train_visualize_grad.py using the following command. python train_visualize_grad.py

On analyzing the VOG score for a particular class (e.g. below are magpie and pop bottle) in the late training stage, we found two unique groups of images. In this work, we hypothesize that examples that a model has difficulty learning (images on the right) will exhibit higher variance in gradient updates over the course of training (. On the other hand, the gradient updates for the relatively easier examples are expected to stabilize early in training and converge to a narrow range of values.

Each 5×5 grid shows the top-25 ImageNet training-set images with the lowest (left column) and highest (right column) VOG scores for the class magpie and pop bottle with their predicted labels below the image. Training set images with higher VOG scores (b) tend to feature zoomed-in images with atypical color schemes and vantage points.

4. Licenses

Note that the code in this repository is licensed under MIT License, but, the pre-trained condition models used by the code have their own licenses. Please carefully check them before use.

5. Questions?

If you have questions/suggestions, please feel free to email or create github issues.

Owner
Chirag Agarwal
Researching the Unknown
Chirag Agarwal
Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.

PyTorch Implementation of Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers 1 Using Colab Please notic

Hila Chefer 489 Jan 07, 2023
MAME is a multi-purpose emulation framework.

MAME's purpose is to preserve decades of software history. As electronic technology continues to rush forward, MAME prevents this important "vintage" software from being lost and forgotten.

Michael Murray 6 Oct 25, 2020
Official PyTorch Implementation of SSMix (Findings of ACL 2021)

SSMix: Saliency-based Span Mixup for Text Classification (Findings of ACL 2021) Official PyTorch Implementation of SSMix | Paper Abstract Data augment

Clova AI Research 52 Dec 27, 2022
A platform for intelligent agent learning based on a 3D open-world FPS game developed by Inspir.AI.

Wilderness Scavenger: 3D Open-World FPS Game AI Challenge This is a platform for intelligent agent learning based on a 3D open-world FPS game develope

46 Nov 24, 2022
An Agnostic Computer Vision Framework - Pluggable to any Training Library: Fastai, Pytorch-Lightning with more to come

IceVision is the first agnostic computer vision framework to offer a curated collection with hundreds of high-quality pre-trained models from torchvision, MMLabs, and soon Pytorch Image Models. It or

airctic 789 Dec 29, 2022
A note taker for NVDA. Allows the user to create, edit, view, manage and export notes to different formats.

Quick Notetaker add-on for NVDA The Quick Notetaker add-on is a wonderful tool which allows writing notes quickly and easily anytime and from any app

5 Dec 06, 2022
Boundary-aware Transformers for Skin Lesion Segmentation

Boundary-aware Transformers for Skin Lesion Segmentation Introduction This is an official release of the paper Boundary-aware Transformers for Skin Le

Jiacheng Wang 79 Dec 16, 2022
PyTorch implementation for Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuous Sign Language Recognition.

Stochastic CSLR This is the PyTorch implementation for the ECCV 2020 paper: Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuou

Zhe Niu 28 Dec 19, 2022
Code accompanying "Adaptive Methods for Aggregated Domain Generalization"

Adaptive Methods for Aggregated Domain Generalization (AdaClust) Official Pytorch Implementation of Adaptive Methods for Aggregated Domain Generalizat

Xavier Thomas 15 Sep 20, 2022
A Next Generation ConvNet by FaceBookResearch Implementation in PyTorch(Original) and TensorFlow.

ConvNeXt A Next Generation ConvNet by FaceBookResearch Implementation in PyTorch(Original) and TensorFlow. A FacebookResearch Implementation on A Conv

Raghvender 2 Feb 14, 2022
Official implementation for Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020

Likelihood-Regret Official implementation of Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020. T

Xavier 33 Oct 12, 2022
Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions

Aquarius Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions NOTE: We are currently going through the open-source process requir

Zhiyuan YAO 0 Jun 02, 2022
PyTorch implementation of HDN(Homography Decomposition Networks) for planar object tracking

Homography Decomposition Networks for Planar Object Tracking This project is the offical PyTorch implementation of HDN(Homography Decomposition Networ

CaptainHook 48 Dec 15, 2022
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022
Data-driven reduced order modeling for nonlinear dynamical systems

SSMLearn Data-driven Reduced Order Models for Nonlinear Dynamical Systems This package perform data-driven identification of reduced order model based

Haller Group, Nonlinear Dynamics 27 Dec 13, 2022
Mmdet benchmark with python

mmdet_benchmark 本项目是为了研究 mmdet 推断性能瓶颈,并且对其进行优化。 配置与环境 机器配置 CPU:Intel(R) Core(TM) i9-10900K CPU @ 3.70GHz GPU:NVIDIA GeForce RTX 3080 10GB 内存:64G 硬盘:1T

杨培文 (Yang Peiwen) 24 May 21, 2022
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

The dataset contains 3 million attribute-value annotations across 1257 unique categories on 2.2 million cleaned Amazon product profiles. It is a large, multi-sourced, diverse dataset for product attr

Google Research Datasets 89 Jan 08, 2023
Codebase for the self-supervised goal reaching benchmark introduced in the LEXA paper

LEXA Benchmark Codebase for the self-supervised goal reaching benchmark introduced in the LEXA paper (Discovering and Achieving Goals via World Models

Oleg Rybkin 36 Dec 22, 2022
Datasets for new state-of-the-art challenge in disentanglement learning

High resolution disentanglement datasets This repository contains the Falcor3D and Isaac3D datasets, which present a state-of-the-art challenge for co

NVIDIA Research Projects 37 May 26, 2022
Unofficial TensorFlow implementation of Protein Interface Prediction using Graph Convolutional Networks.

[TensorFlow] Protein Interface Prediction using Graph Convolutional Networks Unofficial TensorFlow implementation of Protein Interface Prediction usin

YeongHyeon Park 9 Oct 25, 2022