Part of Speech Tagging using Hidden Markov Model (HMM) POS Tagger and Brill Tagger

Overview

Part of Speech Tagging using Hidden Markov Model (HMM) POS Tagger and Brill Tagger

In this project, our aim is to tune, compare, and contrast the performance of the Hidden Markov Model (HMM) POS tagger and the Brill POS tagger. To perform this task, we will train these two taggers using data from a specific domain and test their accuracy in predicting tag sequences from data belonging to the same domain and data from a different domain.

How to Execute?

To run this project,

  1. Download the repository as a zip file.

  2. Extract the zip to get the project folder.

  3. Open Terminal in the directory you extracted the project folder to.

  4. Change directory to the project folder using:

    cd part-of-speech-taggers-main

  5. Install the required libraries, NLTK and scikit-learn using the following commands:

    pip3 install nltk

    pip3 install -U scikit-learn

  6. Now to execute the code, use any of the following commands (in the current directory):

HMM Tagger Predictions: python3 src/main.py --tagger hmm --train data/train.txt --test data/test.txt --output output/test_hmm.txt

Brill Tagger Predictions: python3 src/main.py --tagger brill --train data/train.txt --test data/test.txt --output output/test_brill.txt

Description of the execution command

Our program src/main.py that takes four command-line options. The first is --tagger to indicate the tagger type, second is --train for the path to a training corpus, the third option is --test for the path to a test corpus, and the fourth option is --output for the output file.

The two possible values for --tagger option are:

  • hmm for the Hidden Markov Model POS Tagger

  • brill for the Brill POS Tagger

The training data can be found in data/train.txt, the in-domain test data can be found in data/test.txt, and the out-of-domain test data can be found in data/test_ood.txt.

The output file must be generated in the output/ directory.

So specifying these paths, one example of a possible execution command is:

python3 src/main.py --tagger hmm --train data/train.txt --test data/test.txt --output output/test_hmm.txt

References

https://docs.huihoo.com/nltk/0.9.5/api/nltk.tag.hmm.HiddenMarkovModelTrainer-class.html

https://tedboy.github.io/nlps/generated/generated/nltk.tag.HiddenMarkovModelTagger.html

https://www.kite.com/python/docs/nltk.HiddenMarkovModelTagger.train

https://gist.github.com/blumonkey/007955ec2f67119e0909

https://docs.huihoo.com/nltk/0.9.5/api/nltk.tag.brill-module.html

https://www.nltk.org/api/nltk.tag.brill_trainer.html

https://www.nltk.org/_modules/nltk/tag/brill.html

https://www.geeksforgeeks.org/nlp-brill-tagger/

https://www.nltk.org/howto/probability.html

Owner
Chirag Daryani
Software Engineer | Data Science | Machine Learning | Python | Blog: https://chiragdaryani.medium.com/
Chirag Daryani
Data and evaluation code for the paper WikiNEuRal: Combined Neural and Knowledge-based Silver Data Creation for Multilingual NER (EMNLP 2021).

Data and evaluation code for the paper WikiNEuRal: Combined Neural and Knowledge-based Silver Data Creation for Multilingual NER. @inproceedings{tedes

Babelscape 40 Dec 11, 2022
Chinese Grammatical Error Diagnosis

nlp-CGED Chinese Grammatical Error Diagnosis 中文语法纠错研究 基于序列标注的方法 所需环境 Python==3.6 tensorflow==1.14.0 keras==2.3.1 bert4keras==0.10.6 笔者使用了开源的bert4keras

12 Nov 25, 2022
Weakly-supervised Text Classification Based on Keyword Graph

Weakly-supervised Text Classification Based on Keyword Graph How to run? Download data Our dataset follows previous works. For long texts, we follow C

Hello_World 20 Dec 29, 2022
🧪 Cutting-edge experimental spaCy components and features

spacy-experimental: Cutting-edge experimental spaCy components and features This package includes experimental components and features for spaCy v3.x,

Explosion 65 Dec 30, 2022
multi-label,classifier,text classification,多标签文本分类,文本分类,BERT,ALBERT,multi-label-classification,seq2seq,attention,beam search

multi-label,classifier,text classification,多标签文本分类,文本分类,BERT,ALBERT,multi-label-classification,seq2seq,attention,beam search

hellonlp 30 Dec 12, 2022
SpeechBrain is an open-source and all-in-one speech toolkit based on PyTorch.

The goal is to create a single, flexible, and user-friendly toolkit that can be used to easily develop state-of-the-art speech technologies, including systems for speech recognition, speaker recognit

SpeechBrain 5.1k Jan 09, 2023
Maix Speech AI lib, including ASR, chat, TTS etc.

Maix-Speech 中文 | English Brief Now only support Chinese, See 中文 Build Clone code by: git clone https://github.com/sipeed/Maix-Speech Compile x86x64 c

Sipeed 267 Dec 25, 2022
BMInf (Big Model Inference) is a low-resource inference package for large-scale pretrained language models (PLMs).

BMInf (Big Model Inference) is a low-resource inference package for large-scale pretrained language models (PLMs).

OpenBMB 377 Jan 02, 2023
Chinese Pre-Trained Language Models (CPM-LM) Version-I

CPM-Generate 为了促进中文自然语言处理研究的发展,本项目提供了 CPM-LM (2.6B) 模型的文本生成代码,可用于文本生成的本地测试,并以此为基础进一步研究零次学习/少次学习等场景。[项目首页] [模型下载] [技术报告] 若您想使用CPM-1进行推理,我们建议使用高效推理工具BMI

Tsinghua AI 1.4k Jan 03, 2023
ZUNIT - Toward Zero-Shot Unsupervised Image-to-Image Translation

ZUNIT Dependencies you can install all the dependencies by pip install -r requirements.txt Datasets Download CUB dataset. Unzip the birds.zip at ./da

Chen Yuanqi 9 Jun 24, 2022
Search Git commits in natural language

NaLCoS - NAtural Language COmmit Search Search commit messages in your repository in natural language. NaLCoS (NAtural Language COmmit Search) is a co

Pushkar Patel 50 Mar 22, 2022
Document processing using transformers

Doc Transformers Document processing using transformers. This is still in developmental phase, currently supports only extraction of form data i.e (ke

Vishnu Nandakumar 13 Dec 21, 2022
CCF BDCI BERT系统调优赛题baseline(Pytorch版本)

CCF BDCI BERT系统调优赛题baseline(Pytorch版本) 此版本基于Pytorch后端的huggingface进行实现。由于此实现使用了Oneflow的dataloader作为数据读入的方式,因此也需要安装Oneflow。其它框架的数据读取可以参考OneflowDataloade

Ziqi Zhou 9 Oct 13, 2022
Simplified diarization pipeline using some pretrained models - audio file to diarized segments in a few lines of code

simple_diarizer Simplified diarization pipeline using some pretrained models. Made to be a simple as possible to go from an input audio file to diariz

Chau 65 Dec 30, 2022
Various capabilities for static malware analysis.

Malchive The malchive serves as a compendium for a variety of capabilities mainly pertaining to malware analysis, such as scripts supporting day to da

MITRE Cybersecurity 64 Nov 22, 2022
justCTF [*] 2020 challenges sources

justCTF [*] 2020 This repo contains sources for justCTF [*] 2020 challenges hosted by justCatTheFish. TLDR: Run a challenge with ./run.sh (requires Do

justCatTheFish 25 Dec 27, 2022
Blender addon - Scrub timeline from viewport with a shortcut

Viewport scrub timeline Move in the timeline directly in viewport and snap to nearest keyframe Note : This standalone feature will be added in the nat

Samuel Bernou 40 Nov 07, 2022
Task-based datasets, preprocessing, and evaluation for sequence models.

SeqIO: Task-based datasets, preprocessing, and evaluation for sequence models. SeqIO is a library for processing sequential data to be fed into downst

Google 290 Dec 26, 2022
PyWorld3 is a Python implementation of the World3 model

The World3 model revisited in Python Install & Hello World3 How to tune your own simulation Licence How to cite PyWorld3 with Bibtex References & ackn

Charles Vanwynsberghe 248 Dec 14, 2022
Graph Coloring - Weighted Vertex Coloring Problem

Graph Coloring - Weighted Vertex Coloring Problem This project proposes several local searches and an MCTS algorithm for the weighted vertex coloring

Cyril 1 Jul 08, 2022