Graph Coloring - Weighted Vertex Coloring Problem

Overview

Graph Coloring - Weighted Vertex Coloring Problem

MIT License

This project proposes several local searches and an MCTS algorithm for the weighted vertex coloring problem (WVCP).

This problem is an variant of the Graph Coloring Problem. Given a weighted graph G=(V,E), the set of vertices V, the set of edges E and let W be the set of weights w(v) associated to each vertex v in V, the WVCP consists in finding a partition of the vertices V in into k color groups S=(V_1,...,Vk) (1 \leq k \leq |V|) such that no adjacent vertices belong to the same color group and such that the objective function f(S) = \sum_{i=1}^{k}\max_{v\in V_i}{w(v)} is minimized.

This project is coded in C++ for the calculation part and in Python for the data analysis. This work is related to the article :

Grelier, C., Goudet, O., Hao, J.-K., 2022. On Monte Carlo Tree Search for Weighted Vertex Coloring. arXiv:2202.01665 [cs]. https://arxiv.org/abs/2202.01665

Requirements

To compile this project you need :

  • cmake 3.14+
  • Doxygen (optional, to build the documentation)
  • Python (used with 3.8+ for the slurm job generators, data analysis and documentation)

Run the project

Clone the project

git clone https://github.com/Cyril-Grelier/gc_wvcp_mcts

Go to the project directory

cd gc_wvcp_mcts

Load the instances

git submodule init
git submodule update

Build and compile the project :

./scripts/build.sh

Run the project :

cd build
./gc_wvcp --help

Run with slurm

You can find a generator of “to_eval” file to run jobs with slurm or GNU parallel. Set the desired instances, random seed and different parameters in scripts/generator_to_eval_ls.py (for local search) or scripts/generator_to_eval_mcts.py (for mcts) and run the script with python (no particular packages are required) python scripts/generator_to_eval_mcts.py and it will generate output directory and a to_eval file which will contain each command line argument to run with slurm or GNU Parallel.

Create Python environment for data analysis or documentation

Make sure to create the environment for python and activate it before running scripts for data analysis or documentation :

./scripts/build_python.sh
source venv/bin/activate

Data analysis

scripts/generate_table.py takes raw data and convert it to xlsx files (in xlsx_files repertory) with colored best scores, p-value calculation.

Make sure to set all required methods, instances and output names directly in the script before running it.

Results

You can find the raw results in outputs from runs of the code on different instances on the cluster of Nantes : https://ccipl.univ-nantes.fr/ (nazare nodes). These files are in csv format with the header on the first line, followed by each improving solution found during the search (with the complete solution), the last line corresponds to the best solution found during the whole search with the number of iterations, the time,… at the end of the run. The processed data can be found in xlsx_files (files generated by scripts/generate_table.py script). In those files, the results are slightly different comparing to the results in the article as they have been computed on a different CPU but the tendency stay the same.

Documentation

You can generate the documentation by running :

cd docs
make html

The doc main page will be located in : docs/_build/html/index.html. It’s a basic documentation generated from comments in the code.

Acknowledgements

We would like to thank Dr. Wen Sun for sharing the binary code of their AFISA algorithm [1] (the AFISA algorithm have been reimplemented from the article, afisa_original), Dr. Yiyuan Wang for sharing the code of their RedLS algorithm [2] (the RedLS algorithm have been reimplemented from the article, redls) and Pr. Bruno Nogueira for sharing the code of their ILS-TS algorithm [3] (some part of the code have been used and adapted to the implementation of the project, ilsts).

Owner
Cyril
PHD student currently working on metaheuristic (soon) guided by deep learning to solve graph coloring problems.
Cyril
Build Text Rerankers with Deep Language Models

Reranker is a lightweight, effective and efficient package for training and deploying deep languge model reranker in information retrieval (IR), question answering (QA) and many other natural languag

Luyu Gao 140 Dec 06, 2022
This is Assignment1 code for the Web Data Processing System.

This is a Python program to Entity Linking by processing WARC files. We recognize entities from web pages and link them to a Knowledge Base(Wikidata).

3 Dec 04, 2022
Shirt Bot is a discord bot which uses GPT-3 to generate text

SHIRT BOT · Shirt Bot is a discord bot which uses GPT-3 to generate text. Made by Cyclcrclicly#3420 (474183744685604865) on Discord. Support Server EX

31 Oct 31, 2022
Predicting the usefulness of reviews given the review text and metadata surrounding the reviews.

Predicting Yelp Review Quality Table of Contents Introduction Motivation Goal and Central Questions The Data Data Storage and ETL EDA Data Pipeline Da

Jeff Johannsen 3 Nov 27, 2022
pyMorfologik MorfologikpyMorfologik - Python binding for Morfologik.

Python binding for Morfologik Morfologik is Polish morphological analyzer. For more information see http://github.com/morfologik/morfologik-stemming/

Damian Mirecki 18 Dec 29, 2021
Rethinking the Truly Unsupervised Image-to-Image Translation - Official PyTorch Implementation (ICCV 2021)

Rethinking the Truly Unsupervised Image-to-Image Translation (ICCV 2021) Each image is generated with the source image in the left and the average sty

Clova AI Research 436 Dec 27, 2022
A Transformer Implementation that is easy to understand and customizable.

Simple Transformer I've written a series of articles on the transformer architecture and language models on Medium. This repository contains an implem

Naoki Shibuya 4 Jan 20, 2022
A tool helps build a talk preview image by combining the given background image and talk event description

talk-preview-img-builder A tool helps build a talk preview image by combining the given background image and talk event description Installation and U

PyCon Taiwan 4 Aug 20, 2022
用Resnet101+GPT搭建一个玩王者荣耀的AI

基于pytorch框架用resnet101加GPT搭建AI玩王者荣耀 本源码模型主要用了SamLynnEvans Transformer 的源码的解码部分。以及pytorch自带的预训练模型"resnet101-5d3b4d8f.pth"

冯泉荔 2.2k Jan 03, 2023
A PyTorch implementation of VIOLET

VIOLET: End-to-End Video-Language Transformers with Masked Visual-token Modeling A PyTorch implementation of VIOLET Overview VIOLET is an implementati

Tsu-Jui Fu 119 Dec 30, 2022
Conversational text Analysis using various NLP techniques

Conversational text Analysis using various NLP techniques

Rita Anjana 159 Jan 06, 2023
NLP tool to extract emotional phrase from tweets 🤩

Emotional phrase extractor Extract phrase in the given text that is used to express the sentiment. Capturing sentiment in language is important in the

Shahul ES 38 Oct 17, 2022
Deploying a Text Summarization NLP use case on Docker Container Utilizing Nvidia GPU

GPU Docker NLP Application Deployment Deploying a Text Summarization NLP use case on Docker Container Utilizing Nvidia GPU, to setup the enviroment on

Ritesh Yadav 9 Oct 14, 2022
TFIDF-based QA system for AIO2 competition

AIO2 TF-IDF Baseline This is a very simple question answering system, which is developed as a lightweight baseline for AIO2 competition. In the traini

Masatoshi Suzuki 4 Feb 19, 2022
Beautiful visualizations of how language differs among document types.

Scattertext 0.1.0.0 A tool for finding distinguishing terms in corpora and displaying them in an interactive HTML scatter plot. Points corresponding t

Jason S. Kessler 2k Dec 27, 2022
Speech Recognition Database Management with python

Speech Recognition Database Management The main aim of this project is to recogn

Abhishek Kumar Jha 2 Feb 02, 2022
Repository for the paper: VoiceMe: Personalized voice generation in TTS

🗣 VoiceMe: Personalized voice generation in TTS Abstract Novel text-to-speech systems can generate entirely new voices that were not seen during trai

Pol van Rijn 80 Dec 29, 2022
Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding

Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding

Bethge Lab 61 Dec 21, 2022
Prompt-learning is the latest paradigm to adapt pre-trained language models (PLMs) to downstream NLP tasks

Prompt-learning is the latest paradigm to adapt pre-trained language models (PLMs) to downstream NLP tasks, which modifies the input text with a textual template and directly uses PLMs to conduct pre

THUNLP 2.3k Jan 08, 2023
Framework for fine-tuning pretrained transformers for Named-Entity Recognition (NER) tasks

NERDA Not only is NERDA a mesmerizing muppet-like character. NERDA is also a python package, that offers a slick easy-to-use interface for fine-tuning

Ekstra Bladet 141 Dec 30, 2022