This repository serves as a place to document a toy attempt on how to create a generative text model in Catalan, based on GPT-2

Overview

GPT-2 in Catalan

This repository serves as a place to document a toy attempt on how to create a generative text model in Catalan, based on GPT-2. In other words... this is more of a prototype and a personal playground than a serious attempt to have a fully functional GPT-2 in Catalan.

Nevertheless, I hope this can also help someone else train their own GPT-2 model and provide some pointers on how to do so.

Suggestions and constructive criticism are always welcome!

1. GPT-2 πŸ“

1.1. What is GPT-2 ❓

GPT-2 (GPT-2 stands for Generative Pre-trained Transformer 2) is a transformer-based language model trained in large volumes of data and was not trained with a specific task in mind. Nevertheless, it has probably been used mostly for generating new text.

A better and further explanation can be found here (http://jalammar.github.io/illustrated-gpt2/).

1.2. Why GPT-2 ❔

It is undeniable that GPT-2 played a large role and became very popular when it came out. It has also created some controversy. These aside, GPT-2 acted as a big step forward in terms of generating texts... And is also "faster" to train on custom data than its next generation sibling, GPT-3.

2. Training πŸ”¨

2.1. Requirements πŸ“Ž

You will need a powerful GPU or reduce the batch size. You can also use a VM from a Cloud service such as Google Colab or Microsoft Azure.

2.2. Training Script πŸ“ˆ

The training is implemented in the train_GPT2.py script, which serves as a skeleton. You can run it from the Commandline and passing all the arguments.

e.g.

cd src
./train_GPT2.py \
    --model DeepESP/gpt2-spanish \
    --tokenizer DeepESP/gpt2-spanish \
    --train_path ../data/catalan_corpus_train.csv \
    --test_path ../data/catalan_corpus_test.csv \
    --n_epochs 1 \
    --train_batch_size 4 \
    --eval_batch_size 8 \
    --eval_steps 100 \
    --save_steps 1000 \
    --warmup_steps 100 \
    --output gpt2-catalan

2.3. About the data used πŸ“‚ open_file_folder

The data used has mostly been the WikiCorpus data provided by the Computer Science department @ FIB, UPC (Facultat d'Informàtica de Barcelona, Universitat Politècnica de Catalunya).

You can download it using the datasets library from Huggingface:

from datasets import load_dataset

dataset = load_dataset("wikicorpus, 'raw_ca')

Or you can use the download_wikicorpus.py file in this repository, which also splits the data in train/test and can create a smaller subset for testing, if desired.

2.3.1. WikiCorpus PROs πŸ‘

Well, the data is already obtained. That's always a pro.

2.3.2. WikiCorpus CONs πŸ‘Ž

We are limiting the knowledge of the Language model to data from the Wikipedia. Therefore, this model will probably be more error-prone with informal text inputs. This includes data from chats, colloquialisms and text from social media.

Additionally, the size of the data is tiny with respect to what it should be.

Further training for specific tasks ⚑

Once the model is trained in Catalan and we have a base, we can further train this model for a specific task in mind.

A couple of Proof of Concepts (PoC) have been done using data gathered from Twitter and also from Catalan songs.

Testing the model 🐱

We can test the trained model easily using the script test_generation.py.

cd src
python .\test_generation.py -t DeepESP/gpt2-spanish -m ../data/gpt2-catalan -i generation_test.txt

3. Questions ❓ ❔

3.1. Why Catalan ❓

Artificial Intelligence should not be only for largely spoken languages, such as English or even Spanish. Catalan, a minority language, is my mother tongue and it's always fun to see something you work with also operating in your own language. So why not?

3.2. Why use a Pretrained model in Spanish ❔

Although Spanish and Catalan are different languages, they share a lot of expressions, vocabulary and grammatical structures. Therefore, basing a Catalan model on a previously trained model in a close language such as Spanish is not unreasonable.

Transferring the knowledge from it to our model is better than starting from zero, specially to save computational time.

3.3. Can I use another data/language ❓

Even though the scripts are all prepared with the Catalan language in mind, the scripts should work with any text data, be it Catalan from the Wikicorpus,

Feel free to change the CatalanDataset class or swap it with yours, since probably formatting of the input text is the most varying aspect between projects.

Be sure to also change the base model, since if you want to train another language (e.g. German), basing it on a pre-trained model in Spanish will not work well.

4. TO-DO 🚧

Since we are actually using the Transfer learning approach and relying on a previously pretrained model in Spanish, we probably don't have as an accurate model as we should.

More varied data should also be used during the training, because it is very biased towards informative data (for obvious reasons).

Owner
Laura
.
Laura
A deep learning-based translation library built on Huggingface transformers

DL Translate A deep learning-based translation library built on Huggingface transformers and Facebook's mBART-Large πŸ’» GitHub Repository πŸ“š Documentat

Xing Han Lu 244 Dec 30, 2022
Machine Psychology: Python Generated Art

Machine Psychology: Python Generated Art A limited collection of 64 algorithmically generated artwork. Each unique piece is then given a title by the

Pixegami Team 67 Dec 13, 2022
A telegram bot to translate 100+ Languages

πŸ”₯ GOOGLE TRANSLATER πŸ”₯ The owner would not be responsible for any kind of bans due to the bot. β€’ ⚑ INSTALLING ⚑ β€’ β€’ πŸ”° Deploy To Railway πŸ”° β€’ β€’ βœ… OFF

AΙ΄α΄‹Ιͺα΄› Kα΄œα΄α΄€Κ€ 5 Dec 20, 2021
CoSENT ζ―”Sentence-BERTζ›΄ζœ‰ζ•ˆηš„ε₯ε‘ι‡ζ–Ήζ‘ˆ

CoSENT ζ―”Sentence-BERTζ›΄ζœ‰ζ•ˆηš„ε₯ε‘ι‡ζ–Ήζ‘ˆ

θ‹ε‰‘ζž—(Jianlin Su) 201 Dec 12, 2022
A relatively simple python program to generate one of those reddit text to speech videos dominating youtube.

Reddit text to speech generator A basic reddit tts video generator Current functionality Generate videos for subs based on comments,(askreddit) so rea

Aadvik 17 Dec 19, 2022
Converts python code into c++ by using OpenAI CODEX.

🦾 codex_py2cpp πŸ€– OpenAI Codex Python to C++ Code Generator Your Python Code is too slow? 🐌 You want to speed it up but forgot how to code in C++? ⌨

Alexander 423 Jan 01, 2023
Modified GPT using average pooling to reduce the softmax attention memory constraints.

NLP-GPT-Upsampling This repository contains an implementation of Open AI's GPT Model. In particular, this implementation takes inspiration from the Ny

WD 1 Dec 03, 2021
A versatile token stream for handwritten parsers.

Writing recursive-descent parsers by hand can be quite elegant but it's often a bit more verbose than expected, especially when it comes to handling indentation and reporting proper syntax errors. Th

Valentin Berlier 8 Nov 30, 2022
WikiPron - a command-line tool and Python API for mining multilingual pronunciation data from Wiktionary

WikiPron WikiPron is a command-line tool and Python API for mining multilingual pronunciation data from Wiktionary, as well as a database of pronuncia

213 Jan 01, 2023
Simple Annotated implementation of GPT-NeoX in PyTorch

Simple Annotated implementation of GPT-NeoX in PyTorch This is a simpler implementation of GPT-NeoX in PyTorch. We have taken out several optimization

labml.ai 101 Dec 03, 2022
Datasets of Automatic Keyphrase Extraction

This repository contains 20 annotated datasets of Automatic Keyphrase Extraction made available by the research community. Following are the datasets and the original papers that proposed them. If yo

LIAAD - Laboratory of Artificial Intelligence and Decision Support 163 Dec 23, 2022
Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

1.3k Dec 26, 2022
Semi-automated vocabulary generation from semantic vector models

vec2word Semi-automated vocabulary generation from semantic vector models This script generates a list of potential conlang word forms along with asso

9 Nov 25, 2022
Gathers machine learning and Tensorflow deep learning models for NLP problems, 1.13 < Tensorflow < 2.0

NLP-Models-Tensorflow, Gathers machine learning and tensorflow deep learning models for NLP problems, code simplify inside Jupyter Notebooks 100%. Tab

HUSEIN ZOLKEPLI 1.7k Dec 30, 2022
Fuzzy String Matching in Python

FuzzyWuzzy Fuzzy string matching like a boss. It uses Levenshtein Distance to calculate the differences between sequences in a simple-to-use package.

SeatGeek 8.8k Jan 01, 2023
A repository to run gpt-j-6b on low vram machines (4.2 gb minimum vram for 2000 token context, 3.5 gb for 1000 token context). Model loading takes 12gb free ram.

Basic-UI-for-GPT-J-6B-with-low-vram A repository to run GPT-J-6B on low vram systems by using both ram, vram and pinned memory. There seem to be some

90 Dec 25, 2022
ETM - R package for Topic Modelling in Embedding Spaces

ETM - R package for Topic Modelling in Embedding Spaces This repository contains an R package called topicmodels.etm which is an implementation of ETM

bnosac 37 Nov 06, 2022
Demo programs for the Talking Head Anime from a Single Image 2: More Expressive project.

Demo Code for "Talking Head Anime from a Single Image 2: More Expressive" This repository contains demo programs for the Talking Head Anime

Pramook Khungurn 901 Jan 06, 2023
Exploration of BERT-based models on twitter sentiment classifications

twitter-sentiment-analysis Explore the relationship between twitter sentiment of Tesla and its stock price/return. Explore the effect of different BER

Sammy Cui 2 Oct 02, 2022