Demo programs for the Talking Head Anime from a Single Image 2: More Expressive project.

Overview

Demo Code for "Talking Head Anime from a Single Image 2: More Expressive"

This repository contains demo programs for the Talking Head Anime from a Single Image 2: More Expressive project. Similar to the previous version, it has two programs:

  • The manual_poser lets you manipulate the facial expression and the head rotation of an anime character, given in a single image, through a graphical user interface. The poser is available in two forms: a standard GUI application, and a Jupyter notebook.
  • The ifacialmocap_puppeteer lets you transfer your facial motion, captured by a commercial iOS application called iFacialMocap, to an image of an anime character.

Try the Manual Poser on Google Colab

If you do not have the required hardware (discussed below) or do not want to download the code and set up an environment to run it, click this link to try running the manual poser on Google Colab.

Hardware Requirements

Both programs require a recent and powerful Nvidia GPU to run. I could personally ran them at good speed with the Nvidia Titan RTX. However, I think recent high-end gaming GPUs such as the RTX 2080, the RTX 3080, or better would do just as well.

The ifacialmocap_puppeteer requires an iOS device that is capable of computing blend shape parameters from a video feed. This means that the device must be able to run iOS 11.0 or higher and must have a TrueDepth front-facing camera. (See this page for more info.) In other words, if you have the iPhone X or something better, you should be all set. Personally, I have used an iPhone 12 mini.

Software Requirements

Both programs were written in Python 3. To run the GUIs, the following software packages are required:

  • Python >= 3.8
  • PyTorch >= 1.7.1 with CUDA support
  • SciPY >= 1.6.0
  • wxPython >= 4.1.1
  • Matplotlib >= 3.3.4

In particular, I created the environment to run the programs with Anaconda, using the following commands:

> conda create -n talking-head-anime-2-demo python=3.8
> conda activate talking-head-anime-2-demo
> conda install pytorch torchvision cudatoolkit=10.2 -c pytorch
> conda install scipy
> pip install wxPython
> conda install matplotlib

To run the Jupyter notebook version of the manual_poser, you also need:

  • Jupyter Notebook >= 6.2.0
  • IPyWidgets >= 7.6.3

This means that, in addition to the commands above, you also need to run:

> conda install -c conda-forge notebook
> conda install -c conda-forge ipywidgets
> jupyter nbextension enable --py widgetsnbextension

Lastly, the ifacialmocap_puppeteer requires iFacialMocap, which is available in the App Store for 980 yen. You also need to install the paired desktop application on your PC or Mac. (Linux users, I'm sorry!) Your iOS and your computer must also use the same network. (For example, you may connect them to the same wireless router.)

Automatic Environment Construction with Anaconda

You can also use Anaconda to download and install all Python packages in one command. Open your shell, change the directory to where you clone the repository, and run:

conda env create -f environment.yml

This will create an environment called talking-head-anime-2-demo containing all the required Python packages.

Download the Model

Before running the programs, you need to download the model files from this Dropbox link and unzip it to the data folder of the repository's directory. In the end, the data folder should look like:

+ data
  + illust
    - waifu_00.png
    - waifu_01.png
    - waifu_02.png
    - waifu_03.png
    - waifu_04.png
    - waifu_05.png
    - waifu_06.png
    - waifu_06_buggy.png
  - combiner.pt
  - eyebrow_decomposer.pt
  - eyebrow_morphing_combiner.pt
  - face_morpher.pt
  - two_algo_face_rotator.pt

The model files are distributed with the Creative Commons Attribution 4.0 International License, which means that you can use them for commercial purposes. However, if you distribute them, you must, among other things, say that I am the creator.

Running the manual_poser Desktop Application

Open a shell. Change your working directory to the repository's root directory. Then, run:

> python tha2/app/manual_poser.py

Note that before running the command above, you might have to activate the Python environment that contains the required packages. If you created an environment using Anaconda as was discussed above, you need to run

> conda activate talking-head-anime-2-demo

if you have not already activated the environment.

Running the manual_poser Jupyter Notebook

Open a shell. Activate the environment. Change your working directory to the repository's root directory. Then, run:

> jupyter notebook

A browser window should open. In it, open tha2.ipynb. Once you have done so, you should see that it only has one cell. Run it. Then, scroll down to the end of the document, and you'll see the GUI there.

Running the ifacialmocap_puppeteer

First, run iFacialMocap on your iOS device. It should show you the device's IP address. Jot it down. Keep the app open.

IP address in iFacialMocap screen

Then, run the companion desktop application.

iFaciaMocap desktop application

Click "Open Advanced Setting >>". The application should expand.

Click the 'Open Advanced Setting >>' button.

Click the button that says "Maya" on the right side.

Click the 'Maya' button.

Then, click "Blender."

Select 'Blender' mode in the desktop application

Next, replace the IP address on the left side with your iOS device's IP address.

Replace IP address with device's IP address.

Click "Connect to Blender."

Click 'Connect to Blender.'

Open a shell. Activate the environment. Change your working directory to the repository's root directory. Then, run:

> python tha2/app/ifacialmocap_puppeteer.py

If the programs are connected properly, you should see that the many progress bars at the bottom of the ifacialmocap_puppeteer window should move when you move your face in front of the iOS device's front-facing camera.

You should see the progress bars moving.

If all is well, load an character image, and it should follow your facial movement.

Constraints on Input Images

In order for the model to work well, the input image must obey the following constraints:

  • It must be of size 256 x 256.
  • It must be of PNG format.
  • It must have an alpha channel.
  • It must contain only one humanoid anime character.
  • The character must be looking straight ahead.
  • The head of the character should be roughly contained in the middle 128 x 128 box.
  • All pixels that do not belong to the character (i.e., background pixels) should have RGBA = (0,0,0,0).

Image specification

FAQ: I prepared an image just like you said, why is my output so ugly?!?

This is most likely because your image does not obey the "background RGBA = (0,0,0,0)" constraint. In other words, your background pixels are (RRR,GGG,BBB,0) for some RRR, GGG, BBB > 0 rather than (0,0,0,0). This happens when you use Photoshop because it does not clear the RGB channels of transparent pixels.

Let's see an example. When I tried to use the manual_poser with data/illust/waifu_06_buggy.png. Here's what I got.

A failure case

When you look at the image, there seems to be nothing wrong with it.

waifu_06_buggy.png

However, if you inspect it with GIMP, you will see that the RGB channels have what backgrounds, which means that those pixels have non-zero RGB values.

In the buggy image, background pixels have colors in the RGB channels.

What you want, instead, is something like the non-buggy version: data/illust/waifu_06.png, which looks exactly the same as the buggy one to the naked eyes.

waifu_06.png

However, in GIMP, all channels have black backgrounds.

In the good image, background pixels do not have colors in any channels.

Because of this, the output was clean.

A success case

A way to make sure that your image works well with the model is to prepare it with GIMP. When exporting your image to the PNG format, make sure to uncheck "Save color values from transparent pixels" before you hit "Export."

Make sure to uncheck 'Save color values from transparent pixels' before exporting!

Disclaimer

While the author is an employee of Google Japan, this software is not Google's product and is not supported by Google.

The copyright of this software belongs to me as I have requested it using the IARC process. However, Google might claim the rights to the intellectual property of this invention.

The code is released under the MIT license. The model is released under the Creative Commons Attribution 4.0 International License.

Owner
Pramook Khungurn
A software developer from Thailand, interested in computer graphics, machine learning, and algorithms.
Pramook Khungurn
NLPretext packages in a unique library all the text preprocessing functions you need to ease your NLP project.

NLPretext packages in a unique library all the text preprocessing functions you need to ease your NLP project.

Artefact 114 Dec 15, 2022
L3Cube-MahaCorpus a Marathi monolingual data set scraped from different internet sources.

L3Cube-MahaCorpus L3Cube-MahaCorpus a Marathi monolingual data set scraped from different internet sources. We expand the existing Marathi monolingual

21 Dec 17, 2022
A repo for open resources & information for people to succeed in PhD in CS & career in AI / NLP

A repo for open resources & information for people to succeed in PhD in CS & career in AI / NLP

420 Dec 28, 2022
Rank-One Model Editing for Locating and Editing Factual Knowledge in GPT

Rank-One Model Editing (ROME) This repository provides an implementation of Rank-One Model Editing (ROME) on auto-regressive transformers (GPU-only).

Kevin Meng 130 Dec 21, 2022
Package for controllable summarization

summarizers summarizers is package for controllable summarization based CTRLsum. currently, we only supports English. It doesn't work in other languag

Hyunwoong Ko 72 Dec 07, 2022
Automated question generation and question answering from Turkish texts using text-to-text transformers

Turkish Question Generation Offical source code for "Automated question generation & question answering from Turkish texts using text-to-text transfor

Open Business Software Solutions 29 Dec 14, 2022
pyMorfologik MorfologikpyMorfologik - Python binding for Morfologik.

Python binding for Morfologik Morfologik is Polish morphological analyzer. For more information see http://github.com/morfologik/morfologik-stemming/

Damian Mirecki 18 Dec 29, 2021
Binaural Speech Synthesis

Binaural Speech Synthesis This repository contains code to train a mono-to-binaural neural sound renderer. If you use this code or the provided datase

Facebook Research 135 Dec 18, 2022
Code for Findings at EMNLP 2021 paper: "Learn Continually, Generalize Rapidly: Lifelong Knowledge Accumulation for Few-shot Learning"

Learn Continually, Generalize Rapidly: Lifelong Knowledge Accumulation for Few-shot Learning This repo is for Findings at EMNLP 2021 paper: Learn Cont

INK Lab @ USC 6 Sep 02, 2022
Research code for "What to Pre-Train on? Efficient Intermediate Task Selection", EMNLP 2021

efficient-task-transfer This repository contains code for the experiments in our paper "What to Pre-Train on? Efficient Intermediate Task Selection".

AdapterHub 26 Dec 24, 2022
⛵️The official PyTorch implementation for "BERT-of-Theseus: Compressing BERT by Progressive Module Replacing" (EMNLP 2020).

BERT-of-Theseus Code for paper "BERT-of-Theseus: Compressing BERT by Progressive Module Replacing". BERT-of-Theseus is a new compressed BERT by progre

Kevin Canwen Xu 284 Nov 25, 2022
Treemap visualisation of Maya scene files

Ever wondered which nodes are responsible for that 600 mb+ Maya scene file? Features Fast, resizable UI Parsing at 50 mb/sec Dependency-free, single-f

Marcus Ottosson 76 Nov 12, 2022
PyTranslator é simultaneamente um editor e tradutor de texto com diversos recursos e interface feito com coração e 100% em Python

PyTranslator O Que é e para que serve o PyTranslator? PyTranslator é simultaneamente um editor e tradutor de texto em com interface gráfica que usa a

Elizeu Barbosa Abreu 1 May 12, 2022
Syntax-aware Multi-spans Generation for Reading Comprehension (TASLP 2022)

SyntaxGen Syntax-aware Multi-spans Generation for Reading Comprehension (TASLP 2022) In this repo, we upload all the scripts for this work. Due to siz

Zhuosheng Zhang 3 Jun 13, 2022
LeBenchmark: a reproducible framework for assessing SSL from speech

LeBenchmark: a reproducible framework for assessing SSL from speech

11 Nov 30, 2022
EMNLP 2021 paper "Pre-train or Annotate? Domain Adaptation with a Constrained Budget".

Pre-train or Annotate? Domain Adaptation with a Constrained Budget This repo contains code and data associated with EMNLP 2021 paper "Pre-train or Ann

Fan Bai 8 Dec 17, 2021
Question and answer retrieval in Turkish with BERT

trfaq Google supported this work by providing Google Cloud credit. Thank you Google for supporting the open source! 🎉 What is this? At this repo, I'm

M. Yusuf Sarıgöz 13 Oct 10, 2022
ChatBotProyect - This is an unfinished project about a simple chatbot.

chatBotProyect This is an unfinished project about a simple chatbot. (union_todo.ipynb) Reminders for the project: Find why one of the vectorizers fai

Tomás 0 Jul 24, 2022
A multi-lingual approach to AllenNLP CoReference Resolution along with a wrapper for spaCy.

Crosslingual Coreference Coreference is amazing but the data required for training a model is very scarce. In our case, the available training for non

Pandora Intelligence 71 Jan 04, 2023
Flexible interface for high-performance research using SOTA Transformers leveraging Pytorch Lightning, Transformers, and Hydra.

Flexible interface for high performance research using SOTA Transformers leveraging Pytorch Lightning, Transformers, and Hydra. What is Lightning Tran

Pytorch Lightning 581 Dec 21, 2022