Official pytorch implementation of Rainbow Memory (CVPR 2021)

Overview

Rainbow Memory - Official PyTorch Implementation

Rainbow Memory: Continual Learning with a Memory of Diverse Samples
Jihwan Bang*, Heesu Kim*, YoungJoon Yoo, Jung-Woo Ha, Jonghyun Choi
CVPR 2021
Paper | Bibtex
(* indicates equal contribution)

NOTE: The code will be pushed to this repository soon.

Abstract

Continual learning is a realistic learning scenario for AI models. Prevalent scenario of continual learning, however, assumes disjoint sets of classes as tasks and is less realistic rather artificial. Instead, we focus on 'blurry' task boundary; where tasks shares classes and is more realistic and practical. To address such task, we argue the importance of diversity of samples in an episodic memory. To enhance the sample diversity in the memory, we propose a novel memory management strategy based on per-sample classification uncertainty and data augmentation, named Rainbow Memory (RM). With extensive empirical validations on MNIST, CIFAR10, CIFAR100, and ImageNet datasets, we show that the proposed method significantly improves the accuracy in blurry continual learning setups, outperforming state of the arts by large margins despite its simplicity.

Overview of the results of RM

The table is shown for last accuracy comparison in various datasets in Blurry10-Online. If you want to see more details, see the paper.

Methods MNIST CIFAR100 ImageNet
EWC 90.98±0.61 26.95±0.36 39.54
Rwalk 90.69±0.62 32.31±0.78 35.26
iCaRL 78.09±0.60 17.39±1.04 17.52
GDumb 88.51±0.52 27.19±0.65 21.52
BiC 77.75±1.27 13.01±0.24 37.20
RM w/o DA 92.65±0.33 34.09±1.41 37.96
RM 91.80±0.69 41.35±0.95 50.11

Updates

  • April 2nd, 2021: Initial upload only README
  • April 16th, 2021: Upload all the codes for experiments

Getting Started

Requirements

  • Python3
  • Pytorch (>1.0)
  • torchvision (>0.2)
  • numpy
  • pillow~=6.2.1
  • torch_optimizer
  • randaugment
  • easydict
  • pandas~=1.1.3

Datasets

All the datasets are saved in dataset directory by following formats as shown below.

[dataset name] 
    |_train
        |_[class1 name]
            |_00001.png
            |_00002.png 
            ...
        |_[class2 name]
            ... 
    |_test (val for ImageNet)
        |_[class1 name]
            |_00001.png
            |_00002.png
            ...
        |_[class2 name]
            ...

You can easily download the dataset following above format.

For ImageNet, you should download the public site.

Usage

To run the experiments in the paper, you just run experiment.sh.

bash experiment.sh 

For various experiments, you should know the role of each argument.

  • MODE: CIL methods. Our method is called rm. [joint, gdumb, icarl, rm, ewc, rwalk, bic] (joint calculates accuracy when training all the datasets at once.)
  • MEM_MANAGE: Memory management method. default uses the memory method which the paper originally used. [default, random, reservoir, uncertainty, prototype].
  • RND_SEED: Random Seed Number
  • DATASET: Dataset name [mnist, cifar10, cifar100, imagenet]
  • STREAM: The setting whether current task data can be seen iteratively or not. [online, offline]
  • EXP: Task setup [disjoint, blurry10, blurry30]
  • MEM_SIZE: Memory size cifar10: k={200, 500, 1000}, mnist: k=500, cifar100: k=2,000, imagenet: k=20,000
  • TRANS: Augmentation. Multiple choices [cutmix, cutout, randaug, autoaug]

Results

There are three types of logs during running experiments; logs, results, tensorboard. The log files are saved in logs directory, and the results which contains accuracy of each task are saved in results directory.

root_directory
    |_ logs 
        |_ [dataset]
            |_{mode}_{mem_manage}_{stream}_msz{k}_rnd{seed_num}_{trans}.log
            |_ ...
    |_ results
        |_ [dataset]
            |_{mode}_{mem_manage}_{stream}_msz{k}_rnd{seed_num}_{trans}.npy
            |_...

In addition, you can also use the tensorboard as following command.

tensorboard --logdir tensorboard

Citation

@inproceedings{jihwan2021rainbow,
  title={Rainbow Memory: Continual Learning with a Memory of Diverse Samples},
  author={Jihwan Bang, Heesu Kim, YoungJoon Yoo, Jung-Woo Ha, Jonghyun Choi},
  booktitle={CVPR},
  month={June},
  year={2021}
}

License

Copyright 2021-present NAVER Corp.

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program.  If not, see .
Owner
Clova AI Research
Open source repository of Clova AI Research, NAVER & LINE
Clova AI Research
UCSD Oasis platform

oasis UCSD Oasis platform Local project setup Install Docker Compose and make sure you have Pip installed Clone the project and go to the project fold

InSTEDD 4 Jun 16, 2021
Repository of continual learning papers

Continual learning paper repository This repository contains an incomplete (but dynamically updated) list of papers exploring continual learning in ma

29 Jan 05, 2023
A new data augmentation method for extreme lighting conditions.

Random Shadows and Highlights This repo has the source code for the paper: Random Shadows and Highlights: A new data augmentation method for extreme l

Osama Mazhar 35 Nov 26, 2022
Ranger deep learning optimizer rewrite to use newest components

Ranger21 - integrating the latest deep learning components into a single optimizer Ranger deep learning optimizer rewrite to use newest components Ran

Less Wright 266 Dec 28, 2022
Lecture materials for Cornell CS5785 Applied Machine Learning (Fall 2021)

Applied Machine Learning (Cornell CS5785, Fall 2021) This repo contains executable course notes and slides for the Applied ML course at Cornell and Co

Volodymyr Kuleshov 103 Dec 31, 2022
The official implementation of CSG-Stump: A Learning Friendly CSG-Like Representation for Interpretable Shape Parsing

CSGStumpNet The official implementation of CSG-Stump: A Learning Friendly CSG-Like Representation for Interpretable Shape Parsing Paper | Project page

Daxuan 39 Dec 26, 2022
(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework

(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework Background: Outlier detection (OD) is a key data mining task for identify

Yue Zhao 127 Jan 05, 2023
Supporting code for "Autoregressive neural-network wavefunctions for ab initio quantum chemistry".

naqs-for-quantum-chemistry This repository contains the codebase developed for the paper Autoregressive neural-network wavefunctions for ab initio qua

Tom Barrett 24 Dec 23, 2022
Official Implementation for Fast Training of Neural Lumigraph Representations using Meta Learning.

Fast Training of Neural Lumigraph Representations using Meta Learning Project Page | Paper | Data Alexander W. Bergman, Petr Kellnhofer, Gordon Wetzst

Alex 39 Oct 08, 2022
Posterior temperature optimized Bayesian models for inverse problems in medical imaging

Posterior temperature optimized Bayesian models for inverse problems in medical imaging Max-Heinrich Laves*, Malte Tölle*, Alexander Schlaefer, Sandy

Artificial Intelligence in Cardiovascular Medicine (AICM) 6 Sep 19, 2022
Multi-task Learning of Order-Consistent Causal Graphs (NeuRIPs 2021)

Multi-task Learning of Order-Consistent Causal Graphs (NeuRIPs 2021) Authors: Xinshi Chen, Haoran Sun, Caleb Ellington, Eric Xing, Le Song Link to pap

Xinshi Chen 2 Dec 20, 2021
🏖 Keras Implementation of Painting outside the box

Keras implementation of Image OutPainting This is an implementation of Painting Outside the Box: Image Outpainting paper from Standford University. So

Bendang 1.1k Dec 10, 2022
DeconvNet : Learning Deconvolution Network for Semantic Segmentation

DeconvNet: Learning Deconvolution Network for Semantic Segmentation Created by Hyeonwoo Noh, Seunghoon Hong and Bohyung Han at POSTECH Acknowledgement

Hyeonwoo Noh 325 Oct 20, 2022
PESTO: Switching Point based Dynamic and Relative Positional Encoding for Code-Mixed Languages

PESTO: Switching Point based Dynamic and Relative Positional Encoding for Code-Mixed Languages Abstract NLP applications for code-mixed (CM) or mix-li

Mohsin Ali, Mohammed 1 Nov 12, 2021
THIS IS THE **OLD** PYMC PROJECT. PLEASE USE PYMC3 INSTEAD:

Introduction Version: 2.3.8 Authors: Chris Fonnesbeck Anand Patil David Huard John Salvatier Web site: https://github.com/pymc-devs/pymc Documentation

PyMC 7.2k Jan 07, 2023
x-transformers-paddle 2.x version

x-transformers-paddle x-transformers-paddle 2.x version paddle 2.x版本 https://github.com/lucidrains/x-transformers 。 requirements paddlepaddle-gpu==2.2

yujun 7 Dec 08, 2022
Indoor Panorama Planar 3D Reconstruction via Divide and Conquer

HV-plane reconstruction from a single 360 image Code for our paper in CVPR 2021: Indoor Panorama Planar 3D Reconstruction via Divide and Conquer (pape

sunset 36 Jan 03, 2023
Official repo for BMVC2021 paper ASFormer: Transformer for Action Segmentation

ASFormer: Transformer for Action Segmentation This repo provides training & inference code for BMVC 2021 paper: ASFormer: Transformer for Action Segme

42 Dec 23, 2022
NBEATSx: Neural basis expansion analysis with exogenous variables

NBEATSx: Neural basis expansion analysis with exogenous variables We extend the NBEATS model to incorporate exogenous factors. The resulting method, c

Cristian Challu 100 Dec 31, 2022
Automated Evidence Collection for Fake News Detection

Automated Evidence Collection for Fake News Detection This is the code repo for the Automated Evidence Collection for Fake News Detection paper accept

Mrinal Rawat 2 Apr 12, 2022