Code for "Parallel Instance Query Network for Named Entity Recognition", accepted at ACL 2022.

Related tags

Text Data & NLPpiqn
Overview

README

Code for Two-stage Identifier: "Parallel Instance Query Network for Named Entity Recognition", accepted at ACL 2022. For details of the model and experiments, please see our paper.

Setup

Requirements

conda create --name acl python=3.8
conda activate acl
pip install -r requirements.txt

Datasets

Nested NER:

Flat NER:

Data format:

{
    "tokens": ["Others", ",", "though", ",", "are", "novices", "."], 
    "entities": [{"type": "PER", "start": 0, "end": 1}, {"type": "PER", "start": 5, "end": 6}], "relations": [], "org_id": "CNN_IP_20030328.1600.07", 
    "ltokens": ["WOODRUFF", "We", "know", "that", "some", "of", "the", "American", "troops", "now", "fighting", "in", "Iraq", "are", "longtime", "veterans", "of", "warfare", ",", "probably", "not", "most", ",", "but", "some", ".", "Their", "military", "service", "goes", "back", "to", "the", "Vietnam", "era", "."], 
    "rtokens": ["So", "what", "is", "it", "like", "for", "them", "to", "face", "combat", "far", "from", "home", "?", "For", "an", "idea", ",", "here", "is", "CNN", "'s", "Candy", "Crowley", "with", "some", "war", "stories", "."]
}

The ltokens contains the tokens from the previous sentence. And The rtokens contains the tokens from the next sentence.

Due to the license, we cannot directly release our preprocessed datasets of ACE04, ACE05, KBP17, NNE and OntoNotes. We only release the preprocessed GENIA, FewNERD, MSRA and CoNLL03 datasets. Download them from here.

If you need other datasets, please contact me ([email protected]) by email. Note that you need to state your identity and prove that you have obtained the license.

Example

Train

python piqn.py train --config configs/nested.conf

Note: You should edit this line in config_reader.py according to the actual number of GPUs.

Evaluation

You can download our checkpoints on ACE04 and ACE05, or train your own model and then evaluate the model. Because of the limited space of Google Cloud Drive, we share the other models in Baidu Cloud Drive, please download at this link (code: js9z).

python identifier.py eval --config configs/batch_eval.conf

If you use the checkpoints (ACE05 and ACE04) we provided, you will get the following results:

  • ACE05:
2022-03-30 12:56:52,447 [MainThread  ] [INFO ]  --- NER ---
2022-03-30 12:56:52,447 [MainThread  ] [INFO ]  
2022-03-30 12:56:52,475 [MainThread  ] [INFO ]                  type    precision       recall     f1-score      support
2022-03-30 12:56:52,475 [MainThread  ] [INFO ]                   PER        88.07        92.92        90.43         1724
2022-03-30 12:56:52,475 [MainThread  ] [INFO ]                   LOC        63.93        73.58        68.42           53
2022-03-30 12:56:52,475 [MainThread  ] [INFO ]                   WEA        86.27        88.00        87.13           50
2022-03-30 12:56:52,475 [MainThread  ] [INFO ]                   GPE        87.22        87.65        87.44          405
2022-03-30 12:56:52,475 [MainThread  ] [INFO ]                   ORG        85.74        81.64        83.64          523
2022-03-30 12:56:52,475 [MainThread  ] [INFO ]                   VEH        83.87        77.23        80.41          101
2022-03-30 12:56:52,475 [MainThread  ] [INFO ]                   FAC        75.54        77.21        76.36          136
2022-03-30 12:56:52,475 [MainThread  ] [INFO ]  
2022-03-30 12:56:52,475 [MainThread  ] [INFO ]                 micro        86.38        88.57        87.46         2992
2022-03-30 12:56:52,475 [MainThread  ] [INFO ]                 macro        81.52        82.61        81.98         2992
2022-03-30 12:56:52,475 [MainThread  ] [INFO ]  
2022-03-30 12:56:52,475 [MainThread  ] [INFO ]  --- NER on Localization ---
2022-03-30 12:56:52,475 [MainThread  ] [INFO ]  
2022-03-30 12:56:52,496 [MainThread  ] [INFO ]                  type    precision       recall     f1-score      support
2022-03-30 12:56:52,496 [MainThread  ] [INFO ]                Entity        90.58        92.91        91.73         2991
2022-03-30 12:56:52,496 [MainThread  ] [INFO ]  
2022-03-30 12:56:52,496 [MainThread  ] [INFO ]                 micro        90.58        92.91        91.73         2991
2022-03-30 12:56:52,496 [MainThread  ] [INFO ]                 macro        90.58        92.91        91.73         2991
2022-03-30 12:56:52,496 [MainThread  ] [INFO ]  
2022-03-30 12:56:52,496 [MainThread  ] [INFO ]  --- NER on Classification ---
2022-03-30 12:56:52,496 [MainThread  ] [INFO ]  
2022-03-30 12:56:52,516 [MainThread  ] [INFO ]                  type    precision       recall     f1-score      support
2022-03-30 12:56:52,516 [MainThread  ] [INFO ]                   PER        97.09        92.92        94.96         1724
2022-03-30 12:56:52,516 [MainThread  ] [INFO ]                   LOC        76.47        73.58        75.00           53
2022-03-30 12:56:52,516 [MainThread  ] [INFO ]                   WEA        95.65        88.00        91.67           50
2022-03-30 12:56:52,516 [MainThread  ] [INFO ]                   GPE        92.93        87.65        90.22          405
2022-03-30 12:56:52,516 [MainThread  ] [INFO ]                   ORG        93.85        81.64        87.32          523
2022-03-30 12:56:52,516 [MainThread  ] [INFO ]                   VEH       100.00        77.23        87.15          101
2022-03-30 12:56:52,516 [MainThread  ] [INFO ]                   FAC        89.74        77.21        83.00          136
2022-03-30 12:56:52,516 [MainThread  ] [INFO ]  
2022-03-30 12:56:52,516 [MainThread  ] [INFO ]                 micro        95.36        88.57        91.84         2992
2022-03-30 12:56:52,517 [MainThread  ] [INFO ]                 macro        92.25        82.61        87.05         2992
  • ACE04
2021-11-15 22:06:50,896 [MainThread  ] [INFO ]  --- NER ---
2021-11-15 22:06:50,896 [MainThread  ] [INFO ]  
2021-11-15 22:06:50,932 [MainThread  ] [INFO ]                  type    precision       recall     f1-score      support
2021-11-15 22:06:50,932 [MainThread  ] [INFO ]                   VEH        88.89        94.12        91.43           17
2021-11-15 22:06:50,932 [MainThread  ] [INFO ]                   WEA        74.07        62.50        67.80           32
2021-11-15 22:06:50,932 [MainThread  ] [INFO ]                   GPE        89.11        87.62        88.36          719
2021-11-15 22:06:50,932 [MainThread  ] [INFO ]                   ORG        85.06        84.60        84.83          552
2021-11-15 22:06:50,932 [MainThread  ] [INFO ]                   FAC        83.15        66.07        73.63          112
2021-11-15 22:06:50,932 [MainThread  ] [INFO ]                   PER        91.09        92.12        91.60         1498
2021-11-15 22:06:50,933 [MainThread  ] [INFO ]                   LOC        72.90        74.29        73.58          105
2021-11-15 22:06:50,933 [MainThread  ] [INFO ]  
2021-11-15 22:06:50,933 [MainThread  ] [INFO ]                 micro        88.48        87.81        88.14         3035
2021-11-15 22:06:50,933 [MainThread  ] [INFO ]                 macro        83.47        80.19        81.61         3035
2021-11-15 22:06:50,933 [MainThread  ] [INFO ]  
2021-11-15 22:06:50,933 [MainThread  ] [INFO ]  --- NER on Localization ---
2021-11-15 22:06:50,933 [MainThread  ] [INFO ]  
2021-11-15 22:06:50,954 [MainThread  ] [INFO ]                  type    precision       recall     f1-score      support
2021-11-15 22:06:50,954 [MainThread  ] [INFO ]                Entity        92.56        91.89        92.23         3034
2021-11-15 22:06:50,954 [MainThread  ] [INFO ]  
2021-11-15 22:06:50,954 [MainThread  ] [INFO ]                 micro        92.56        91.89        92.23         3034
2021-11-15 22:06:50,954 [MainThread  ] [INFO ]                 macro        92.56        91.89        92.23         3034
2021-11-15 22:06:50,954 [MainThread  ] [INFO ]  
2021-11-15 22:06:50,954 [MainThread  ] [INFO ]  --- NER on Classification ---
2021-11-15 22:06:50,955 [MainThread  ] [INFO ]  
2021-11-15 22:06:50,976 [MainThread  ] [INFO ]                  type    precision       recall     f1-score      support
2021-11-15 22:06:50,976 [MainThread  ] [INFO ]                   VEH        94.12        94.12        94.12           17
2021-11-15 22:06:50,976 [MainThread  ] [INFO ]                   WEA        95.24        62.50        75.47           32
2021-11-15 22:06:50,976 [MainThread  ] [INFO ]                   GPE        95.60        87.62        91.44          719
2021-11-15 22:06:50,976 [MainThread  ] [INFO ]                   ORG        93.59        84.60        88.87          552
2021-11-15 22:06:50,976 [MainThread  ] [INFO ]                   FAC        93.67        66.07        77.49          112
2021-11-15 22:06:50,976 [MainThread  ] [INFO ]                   PER        97.11        92.12        94.55         1498
2021-11-15 22:06:50,976 [MainThread  ] [INFO ]                   LOC        84.78        74.29        79.19          105
2021-11-15 22:06:50,976 [MainThread  ] [INFO ]  
2021-11-15 22:06:50,976 [MainThread  ] [INFO ]                 micro        95.59        87.81        91.53         3035
2021-11-15 22:06:50,976 [MainThread  ] [INFO ]                 macro        93.44        80.19        85.87         3035

Citation

If you have any questions related to the code or the paper, feel free to email [email protected].

@inproceedings{shen-etal-2022-piqn,
    title = "Parallel Instance Query Network for Named Entity Recognition",
    author = "Shen, Yongliang  and
      Wang, Xiaobin  and
      Tan, Zeqi  and
      Xu, Guangwei  and
      Xie, Pengjun  and
      Huang, Fei and
      Lu, Weiming and
      Zhuang, Yueting",
    booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics",
    year = "2022",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/2203.10545",
}
Owner
Yongliang Shen
Knowledge is power.
Yongliang Shen
BERN2: an advanced neural biomedical namedentity recognition and normalization tool

BERN2 We present BERN2 (Advanced Biomedical Entity Recognition and Normalization), a tool that improves the previous neural network-based NER tool by

DMIS Laboratory - Korea University 99 Jan 06, 2023
pysentimiento: A Python toolkit for Sentiment Analysis and Social NLP tasks

A Python multilingual toolkit for Sentiment Analysis and Social NLP tasks

297 Dec 29, 2022
gaiic2021-track3-小布助手对话短文本语义匹配复赛rank3、决赛rank4

决赛答辩已经过去一段时间了,我们队伍ac milan最终获得了复赛第3,决赛第4的成绩。在此首先感谢一些队友的carry~ 经过2个多月的比赛,学习收获了很多,也认识了很多大佬,在这里记录一下自己的参赛体验和学习收获。

102 Dec 19, 2022
AllenNLP integration for Shiba: Japanese CANINE model

Allennlp Integration for Shiba allennlp-shiab-model is a Python library that provides AllenNLP integration for shiba-model. SHIBA is an approximate re

Shunsuke KITADA 12 Feb 16, 2022
Graph Coloring - Weighted Vertex Coloring Problem

Graph Coloring - Weighted Vertex Coloring Problem This project proposes several local searches and an MCTS algorithm for the weighted vertex coloring

Cyril 1 Jul 08, 2022
NeurIPS'21: Probabilistic Margins for Instance Reweighting in Adversarial Training (Pytorch implementation).

source code for NeurIPS21 paper robabilistic Margins for Instance Reweighting in Adversarial Training

9 Dec 20, 2022
PyTorch implementation of convolutional neural networks-based text-to-speech synthesis models

Deepvoice3_pytorch PyTorch implementation of convolutional networks-based text-to-speech synthesis models: arXiv:1710.07654: Deep Voice 3: Scaling Tex

Ryuichi Yamamoto 1.8k Dec 30, 2022
Utilize Korean BERT model in sentence-transformers library

ko-sentence-transformers 이 프로젝트는 KoBERT 모델을 sentence-transformers 에서 보다 쉽게 사용하기 위해 만들어졌습니다. Ko-Sentence-BERT-SKTBERT 프로젝트에서는 KoBERT 모델을 sentence-trans

Junghyun 40 Dec 20, 2022
Open source code for AlphaFold.

AlphaFold This package provides an implementation of the inference pipeline of AlphaFold v2.0. This is a completely new model that was entered in CASP

DeepMind 9.7k Jan 02, 2023
The official implementation of "BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Identify Analogies?, ACL 2021 main conference"

BERT is to NLP what AlexNet is to CV This is the official implementation of BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Iden

Asahi Ushio 20 Nov 03, 2022
Lumped-element impedance calculator and frequency-domain plotter.

fastZ: Lumped-Element Impedance Calculator fastZ is a small tool for calculating and visualizing electrical impedance in Python. Features include: Sup

Wesley Hileman 47 Nov 18, 2022
Asr abc - Automatic speech recognition(ASR),中文语音识别

语音识别的简单示例,主要在课堂演示使用 创建python虚拟环境 在linux 和macos 上验证通过 # 如果已经有pyhon3.6 环境,跳过该步骤,使用

LIyong.Guo 8 Nov 11, 2022
A sentence aligner for comparable corpora

About Yalign is a tool for extracting parallel sentences from comparable corpora. Statistical Machine Translation relies on parallel corpora (eg.. eur

Machinalis 128 Aug 24, 2022
Common Voice Dataset explorer

Common Voice Dataset Explorer Common Voice Dataset is by Mozilla Made during huggingface finetuning week Usage pip install -r requirements.txt streaml

Ceyda Cinarel 22 Nov 16, 2022
Speech Recognition for Uyghur using Speech transformer

Speech Recognition for Uyghur using Speech transformer Training: this model using CTC loss and Cross Entropy loss for training. Download pretrained mo

Uyghur 11 Nov 17, 2022
Mirco Ravanelli 2.3k Dec 27, 2022
LSTC: Boosting Atomic Action Detection with Long-Short-Term Context

LSTC: Boosting Atomic Action Detection with Long-Short-Term Context This Repository contains the code on AVA of our ACM MM 2021 paper: LSTC: Boosting

Tencent YouTu Research 9 Oct 11, 2022
Simple GUI where you can enter an article and get a crisp summarized version.

Text-Summarization-using-TextRank-BART Simple GUI where you can enter an article and get a crisp summarized version. How to run: Clone the repo Instal

Rohit P 4 Sep 28, 2022
Sample data associated with the Aurora-BP study

The Aurora-BP Study and Dataset This repository contains sample code, sample data, and explanatory information for working with the Aurora-BP dataset

Microsoft 16 Dec 12, 2022
A Python wrapper for simple offline real-time dictation (speech-to-text) and speaker-recognition using Vosk.

Simple-Vosk A Python wrapper for simple offline real-time dictation (speech-to-text) and speaker-recognition using Vosk. Check out the official Vosk G

2 Jun 19, 2022