Types that make coding in Python quick and safe.

Overview

Type[T]

PyPI Python Versions Build Status Coverage Status Code Quality

Types that make coding in Python quick and safe.

Type[T] works best with Python 3.6 or later. Prior to 3.6, object types must use comment type hint syntax.

Installation

Install it using pip:

pip install typet

Features

  • An Object base class that eliminates boilerplate code and verifies and coerces types when possible.
  • Validation types that, when instantiated, create an instance of a specific type and verify that they are within the user defined boundaries for the type.

Quick Start: Creating a Person

Import the Type[T] types that you will use.

from typet import Bounded, Object, String
  • Object, for composing complex objects
  • Bound to describe a type that validates its value is of the correct type and within bounds upon instantiation
  • String, which will validate that it is instantiated with a string with a length within the defined bounds.

Create Type Aliases That Describe the Intent of the Type

Age = Bounded[int, 0:150]
Name = String[1:50]
Hobby = String[1:300]

In this example, a Person has an Age, which is an integer between 0 and 150, inclusive; a Name which must be a non-empty string with no more than 50 characters; and finally, a Hobby, which is a non-empty string with no more than 300 characters.

Compose a Person object Using Type Aliases

class Person(Object):
    name: Name
    surname: Name
    age: Age
    hobby: Hobby = None

Assigning a class attribute sets that value as the default value for instances of the Object. In this instance, hobby is assigned a default value of None; by convention, this tells Python that the type is Optional[Hobby], and Type[T] will allow None in addition to strings of the correct length.

Put It All Together

from typet import Bounded, Object, String

Age = Bounded[int, 0:150]
Name = String[1:50]
Hobby = String[1:300]

class Person(Object):
    name: Name
    surname: Name
    age: Age
    hobby: Hobby = None

Person is now a clearly defined and typed object with an intuitive constructor, hash method, comparison operators and bounds checking.

Positional arguments will be in the order of the definition of class attributes, and keyword arguments are also acceptable.

jim = Person('Jim', 'Coder', 23, 'Python')
bob = Person('Robert', 'Coder', hobby='C++', age=51)

Python 2.7 to 3.5

Type[T] supports PEP 484 class comment type hints for defining an Object.

from typing import Optional

from typet import Bounded, Object, String

Age = Bounded[int, 0:150]
Name = String[1:50]
Hobby = String[1:300]

class Person(Object):
    name = None  # type: Name
    surname = None  # type: Name
    age = None  # type: Age
    hobby = None  # type: Optional[Hobby]

Note that, because Python prior to 3.6 cannot annotate an attribute without defining it, by convention, assigning the attribute to None will not imply that it is optional; it must be specified explicitly in the type hint comment.

Object Types

Object

One of the cooler features of Type[T] is the ability to create complex objects with very little code. The following code creates an object that generates properties from the annotated class attributes that will ensure that only values of int or that can be coerced into int can be set. It also generates a full suite of common comparison methods.

from typet import Object

class Point(Object):
    x: int
    y: int

Point objects can be used intuitively because they generate a standard __init__ method that will allow positional and keyword arguments.

p1 = Point(0, 0)      # Point(x=0, y=0)
p2 = Point('2', 2.5)  # Point(x=2, y=2)
p3 = Point(y=5, x=2)  # Point(x=2, y=5)
assert p1 < p2        # True
assert p2 < p1        # AssertionError

A close equivalent traditional class would be much larger, would have to be updated for any new attributes, and wouldn't support more advanced casting, such as to types annotated using the typing module:

class Point(object):

    def __init__(self, x, y):
        self.x = x
        self.y = y

    def __repr__(self):
        return 'Point(x={x}, y={y})'.format(x=self.x, y=self.y)

    def __setattr__(self, name, value):
        if name in ('x', 'y'):
            value = int(value)
        super(Point, self).__setattr__(name, value)

    def __eq__(self, other):
        if other.__class__ is not self.__class__:
            return NotImplemented
        return (self.x, self.y) == (other.x, other.y)

    def __ne__(self, other):
        if other.__class__ is not self.__class__:
            return NotImplemented
        return (self.x, self.y) != (other.x, other.y)

    def __lt__(self, other):
        if other.__class__ is not self.__class__:
            return NotImplemented
        return (self.x, self.y) < (other.x, other.y)

    def __le__(self, other):
        if other.__class__ is not self.__class__:
            return NotImplemented
        return (self.x, self.y) <= (other.x, other.y)

    def __gt__(self, other):
        if other.__class__ is not self.__class__:
            return NotImplemented
        return (self.x, self.y) > (other.x, other.y)

    def __ge__(self, other):
        if other.__class__ is not self.__class__:
            return NotImplemented
        return (self.x, self.y) >= (other.x, other.y)

    def __hash__(self):
        return hash((self.x, self.y))

Attributes can be declared optional either manually, by using typing.Optional or by using the PEP 484 implicit optional of a default value of None.

from typing import Optional

from typet import Object

class Point(Object):
    x: Optional[int]
    y: int = None

p1 = Point()   # Point(x=None, y=None)
p2 = Point(5)  # Point(x=5, y=None)

StrictObject

By default, Object will use cast from typingplus to attempt to coerce any values supplied to attributes to the annotated type. In some cases, it may be preferred to disallow casting and only allow types that are already of the correct type. StrictObject has all of the features of Object, but will not coerce values into the annotated type.

from typet import StrictObject

class Point(StrictObject):
    x: int
    y: int

Point(0, 0)      # Okay
Point('2', 2.5)  # Raises TypeError

StrictObject uses is_instance from typingplus to check types, so it's possible to use types from the typing library for stricter checking.

from typing import List

from typet import StrictObject

class IntegerContainer(StrictObject):
    integers: List[int]

IntegerContainer([0, 1, 2, 3])          # Okay
IntegerContainer(['a', 'b', 'c', 'd'])  # Raises TypeError

Validation Types

Type[T] contains a suite of sliceable classes that will create bounded, or validated, versions of those types that always assert their values are within bounds; however, when an instance of a bounded type is instantiated, the instance will be of the original type.

Bounded

Bounded can be sliced with either two arguments or three. The first argument is the type being bound. The second is a slice containing the upper and lower bounds used for comparison during instantiation.

from typet import Bounded

BoundedInt = Bounded[int, 10:20]

BoundedInt(15)  # Okay
type(x)         # <class 'int'>
BoundedInt(5)   # Raises ValueError

Optionally, a third argument, a function, may be supplied that will be run on the value before the comparison.

from typet import Bounded

LengthBoundedString = Bounded[str, 1:3, len]

LengthBoundedString('ab')    # Okay
LengthBoundedString('')      # Raises ValueError
LengthBoundedString('abcd')  # Raises ValueError

Length

Because len is a common comparison method, there is a shortcut type, Length that takes two arguments and uses len as the comparison method.

from typing import List

from typet import Length

LengthBoundedList = Length[List[int], 1:3]

LengthBoundedList([1, 2])        # Okay
LengthBoundedList([])            # Raises ValueError
LengthBoundedList([1, 2, 3, 4])  # Raises ValueError

String

str and len are commonly used together so a special type, String, has been added to simplify binding strings to specific lengths.

from typet import String

ShortString = String[1:3]

ShortString('ab')    # Okay
ShortString('')      # Raises ValueError
ShortString('abcd')  # Raises ValueError

Note that, on Python 2, String instantiates unicode objects and not str.

Metaclasses and Utilities

Singleton

Singleton will cause a class to allow only one instance.

from typet import Singleton

class Config(metaclass=Singleton):
    pass

c1 = Config()
c2 = Config()
assert c1 is c2  # Okay

Singleton supports an optional __singleton__ method on the class that will allow the instance to update if given new parameters.

from typet import Singleton

class Config(metaclass=Singleton):

    def __init__(self, x):
        self.x = x

    def __singleton__(self, x=None):
        if x:
            self.x = x

c1 = Config(1)
c1.x                   # 1
c2 = Config()          # Okay because __init__ is not called.
c2.x                   # 1
c3 = Config(3)         # Calls __singleton__ if it exists.
c1.x                   # 3
c2.x                   # 3
c3.x                   # 3
assert c1 is c2 is c3  # Okay

@singleton

Additionally, there is a decorator, @singleton that can be used make a class a singleton, even if it already uses another metaclass. This is convenient for creating singleton Objects.

from typet import Object, singleton

@singleton
class Config(Object):
    x: int

c1 = Config(1)
c2 = Config()    # Okay because __init__ is not called.
assert c1 is c2  # Okay

@metaclass

Type[T] contains a class decorator, @metaclass, that will create a derivative metaclass from the given metaclasses and the metaclass used by the decorated class and recreate the class with the derived metaclass.

Most metaclasses are not designed to be used in such a way, so careful testing must be performed when this decorator is to be used. It is primarily intended to ease use of additional metaclasses with Objects.

from typet import metaclass, Object, Singleton

@metaclass(Singleton)
class Config(Object):
    x: int

c1 = Config(1)
c2 = Config()    # Okay because __init__ is not called.
assert c1 is c2  # Okay
Comments
  • The Singleton meta class unexpectedly raises a TypeError when we thought __instance__ existed

    The Singleton meta class unexpectedly raises a TypeError when we thought __instance__ existed

    In [4]: _RcliConfig.call()

    TypeError Traceback (most recent call last) in () ----> 1 _RcliConfig.call()

    ~/rcli/venv/lib/python3.6/site-packages/typet/meta.py in call(cls, args, **kwargs) 78 else: 79 try: ---> 80 cls.instance.singleton(args, **kwargs) # type: ignore 81 except AttributeError: 82 pass

    TypeError: 'NoneType' object is not callable

    The code in question is here:

    https://github.com/contains-io/typet/blob/master/typet/meta.py#L64

    opened by zancas 4
  • Add base classes SingletonObject and StrictSingletonObject

    Add base classes SingletonObject and StrictSingletonObject

    Create a SingletonObject by creating a private metaclass that inherits from Singleton and _ObjectMeta and a metaclass for a StrictSingletonObject that inherits from Singleton and _StrictObjectMeta.

    The proposed use case would be a global settings object:

    from typet import SingletonObject, File
    
    class _Configuration(SingletonObject):
        config: File = '~/.my_config'
    
    settings = _Configuration()
    
    enhancement 
    opened by dangle 1
  • Add support for type comments.

    Add support for type comments.

    Because the annotations are read during the metaclass before the class is created, it may be necessary to add support for reading the type hint comments in the metaclass.

    enhancement 
    opened by dangle 1
  • Register validation types as the sliced type.

    Register validation types as the sliced type.

    It should be possible to run this test:

    from typingplus import is_instance
    from typet import Bounded
    assert is_instance(5, Bounded[int, 0:10])
    

    I believe this causes an issue when using validation types with StrictObject.

    This can be done by setting __instancecheck__ and __subclasscheck__ in BoundedMeta._BoundedSubclass.

    bug 
    opened by dangle 1
  • Break package into multiple modules.

    Break package into multiple modules.

    typet/__init__.py is becoming unwieldy. It should be broken into multiple packages and imported into the package with wildcards.

    Initial proposed packages:

    • typet
    • typet.path
    • typet.validation
    • typet.object
    refactor 
    opened by dangle 0
  • Path validation objects should use pathlib.

    Path validation objects should use pathlib.

    The path validation objects, File, Dir, Path, and ExistingPath should instantiate pathlib objects instead of strings. They should also accept pathlib objects.

    A check to import pathlib2 will need to be added to setup.py.

    bug 
    opened by dangle 0
  • Using the @singleton errors on default metaclass.

    Using the @singleton errors on default metaclass.

    When using @singleton on a class that does not inherit from Object (no other metaclasses defined) throws an exception.

    Traceback (most recent call last):
      File "<input>", line 1, in <module>
        @singleton
      File "/home/dangle/Projects/contains.io/containment/.tox/py36/lib/python3.6/site-packages/typet/meta.py", line 58, in _inner
        class _Meta(base, _Meta):  # pylint: disable=function-redefined
    TypeError: Cannot create a consistent method resolution
    order (MRO) for bases type, Singleton
    
    bug 
    opened by dangle 0
  • Add support for Generics in Object and StrictObject

    Add support for Generics in Object and StrictObject

    Currently, using Generics with Object is a pain. Initial support for casting and type validation exist, but creating the class itself is awkward as it requires creating a metaclass.

    from typet import Object
    from typing import Generic, GenericMeta, TypeVar
    
    T = TypeVar('T')
    
    class Meta(type(Object), GenericMeta): ...
    
    class MyObject(Object, Generic[T], meta=Meta):
        value: T
    
    enhancement 
    opened by dangle 0
  • Non Object attributes violate the expectations of the __hash__ function.

    Non Object attributes violate the expectations of the __hash__ function.

    If I make a proper typet Object, I can still assign to its attributes at run time, subsequent comparison or hash operations on the resulting instance will now return unexpected results. I believe the solution is to add logic to set_attr to prevent non-Object, or StrictObject assignment.

    opened by zancas 1
  • Validation types do not work with mypy.

    Validation types do not work with mypy.

    mypy reports validation objects as invalid type aliases.

    Additionally, if a validation type is used as a class annotation without being aliased, mypy ends analysis with an invalid syntax error.

    See python/mypy#4285.

    blocked 
    opened by dangle 0
Owner
Contains
Contains
A document format conversion service based on Pandoc.

reformed Document format conversion service based on Pandoc. Usage The API specification for the Reformed server is as follows: GET /api/v1/formats: L

David Lougheed 3 Jul 18, 2022
advance python series: Data Classes, OOPs, python

Working With Pydantic - Built-in Data Process ========================== Normal way to process data (reading json file): the normal princiople, it's f

Phung Hưng Binh 1 Nov 08, 2021
A plugin to introduce a generic API for Decompiler support in GEF

decomp2gef A plugin to introduce a generic API for Decompiler support in GEF. Like GEF, the plugin is battery-included and requires no external depend

Zion 379 Jan 08, 2023
Sphinx-performance - CLI tool to measure the build time of different, free configurable Sphinx-Projects

CLI tool to measure the build time of different, free configurable Sphinx-Projec

useblocks 11 Nov 25, 2022
Mayan EDMS is a document management system.

Mayan EDMS is a document management system. Its main purpose is to store, introspect, and categorize files, with a strong emphasis on preserving the contextual and business information of documents.

3 Oct 02, 2021
Generate modern Python clients from OpenAPI

openapi-python-client Generate modern Python clients from OpenAPI 3.x documents. This generator does not support OpenAPI 2.x FKA Swagger. If you need

555 Jan 02, 2023
Project created to help beginner programmers to study, despite the lack of internet!

Project created to help beginner programmers to study, despite the lack of internet!

Dev4Dev 2 Oct 25, 2021
Gtech μLearn Sample_bot

Ser_bot Gtech μLearn Sample_bot Do Greet a newly joined member in a channel (random message) While adding a reaction to a message send a message to a

Jerin Paul 1 Jan 19, 2022
Generate a single PDF file from MkDocs repository.

PDF Generate Plugin for MkDocs This plugin will generate a single PDF file from your MkDocs repository. This plugin is inspired by MkDocs PDF Export P

198 Jan 03, 2023
Create docsets for Dash.app-compatible API browser.

doc2dash: Create Docsets for Dash.app and Clones doc2dash is an MIT-licensed extensible Documentation Set generator intended to be used with the Dash.

Hynek Schlawack 498 Dec 30, 2022
Portfolio project for Code Institute Full Stack software development course.

Comic Sales tracker This project is the third milestone project for the Code Institute Diploma in Full Stack Software Development. You can see the fin

1 Jan 10, 2022
A fast time mocking alternative to freezegun that wraps libfaketime.

python-libfaketime: fast date/time mocking python-libfaketime is a wrapper of libfaketime for python. Some brief details: Linux and OS X, Pythons 3.5

Simon Weber 68 Jun 10, 2022
Course Materials for Math 340

UBC Math 340 Materials This repository aims to be the one repository for which you can find everything you about Math 340. Lecture Notes Lecture Notes

2 Nov 25, 2021
Main repository for the Sphinx documentation builder

Sphinx Sphinx is a tool that makes it easy to create intelligent and beautiful documentation for Python projects (or other documents consisting of mul

5.1k Jan 04, 2023
A swagger tool for tornado, using python to write api doc!

SwaggerDoc About A swagger tool for tornado, using python to write api doc! Installation pip install swagger-doc Quick Start code import tornado.ioloo

aaashuai 1 Jan 10, 2022
The blazing-fast Discord bot.

Wavy Wavy is an open-source multipurpose Discord bot built with pycord. Wavy is still in development, so use it at your own risk. Tools and services u

Wavy 7 Dec 27, 2022
Practical Python Programming

Welcome! When I first learned Python nearly 25 years ago, I was immediately struck by how I could productively apply it to all sorts of messy work pro

Dabeaz LLC 8.3k Jan 08, 2023
Valentine-with-Python - A Python program generates an animation of a heart with cool texts of your loved one

Valentine with Python Valentines with Python is a mini fun project I have coded.

Niraj Tiwari 4 Dec 31, 2022
Legacy python processor for AsciiDoc

AsciiDoc.py This branch is tracking the alpha, in-progress 10.x release. For the stable 9.x code, please go to the 9.x branch! AsciiDoc is a text docu

AsciiDoc.py 178 Dec 25, 2022
A simple XLSX/CSV reader - to dictionary converter

sheet2dict A simple XLSX/CSV reader - to dictionary converter Installing To install the package from pip, first run: python3 -m pip install --no-cache

Tomas Pytel 216 Nov 25, 2022