Never use print for debugging again

Overview

PySnooper - Never use print for debugging again

PySnooper is a poor man's debugger. If you've used Bash, it's like set -x for Python, except it's fancier.

Your story: You're trying to figure out why your Python code isn't doing what you think it should be doing. You'd love to use a full-fledged debugger with breakpoints and watches, but you can't be bothered to set one up right now.

You want to know which lines are running and which aren't, and what the values of the local variables are.

Most people would use print lines, in strategic locations, some of them showing the values of variables.

PySnooper lets you do the same, except instead of carefully crafting the right print lines, you just add one decorator line to the function you're interested in. You'll get a play-by-play log of your function, including which lines ran and when, and exactly when local variables were changed.

What makes PySnooper stand out from all other code intelligence tools? You can use it in your shitty, sprawling enterprise codebase without having to do any setup. Just slap the decorator on, as shown below, and redirect the output to a dedicated log file by specifying its path as the first argument.

Example

We're writing a function that converts a number to binary, by returning a list of bits. Let's snoop on it by adding the @pysnooper.snoop() decorator:

import pysnooper

@pysnooper.snoop()
def number_to_bits(number):
    if number:
        bits = []
        while number:
            number, remainder = divmod(number, 2)
            bits.insert(0, remainder)
        return bits
    else:
        return [0]

number_to_bits(6)

The output to stderr is:

Source path:... /my_code/foo.py
Starting var:.. number = 6
15:29:11.327032 call         4 def number_to_bits(number):
15:29:11.327032 line         5     if number:
15:29:11.327032 line         6         bits = []
New var:....... bits = []
15:29:11.327032 line         7         while number:
15:29:11.327032 line         8             number, remainder = divmod(number, 2)
New var:....... remainder = 0
Modified var:.. number = 3
15:29:11.327032 line         9             bits.insert(0, remainder)
Modified var:.. bits = [0]
15:29:11.327032 line         7         while number:
15:29:11.327032 line         8             number, remainder = divmod(number, 2)
Modified var:.. number = 1
Modified var:.. remainder = 1
15:29:11.327032 line         9             bits.insert(0, remainder)
Modified var:.. bits = [1, 0]
15:29:11.327032 line         7         while number:
15:29:11.327032 line         8             number, remainder = divmod(number, 2)
Modified var:.. number = 0
15:29:11.327032 line         9             bits.insert(0, remainder)
Modified var:.. bits = [1, 1, 0]
15:29:11.327032 line         7         while number:
15:29:11.327032 line        10         return bits
15:29:11.327032 return      10         return bits
Return value:.. [1, 1, 0]
Elapsed time: 00:00:00.000001

Or if you don't want to trace an entire function, you can wrap the relevant part in a with block:

import pysnooper
import random

def foo():
    lst = []
    for i in range(10):
        lst.append(random.randrange(1, 1000))

    with pysnooper.snoop():
        lower = min(lst)
        upper = max(lst)
        mid = (lower + upper) / 2
        print(lower, mid, upper)

foo()

which outputs something like:

New var:....... i = 9
New var:....... lst = [681, 267, 74, 832, 284, 678, ...]
09:37:35.881721 line        10         lower = min(lst)
New var:....... lower = 74
09:37:35.882137 line        11         upper = max(lst)
New var:....... upper = 832
09:37:35.882304 line        12         mid = (lower + upper) / 2
74 453.0 832
New var:....... mid = 453.0
09:37:35.882486 line        13         print(lower, mid, upper)
Elapsed time: 00:00:00.000344

Features

If stderr is not easily accessible for you, you can redirect the output to a file:

@pysnooper.snoop('/my/log/file.log')

You can also pass a stream or a callable instead, and they'll be used.

See values of some expressions that aren't local variables:

@pysnooper.snoop(watch=('foo.bar', 'self.x["whatever"]'))

Show snoop lines for functions that your function calls:

@pysnooper.snoop(depth=2)

See Advanced Usage for more options. <------

Installation with Pip

The best way to install PySnooper is with Pip:

$ pip install pysnooper

Other installation options

Conda with conda-forge channel:

$ conda install -c conda-forge pysnooper

Arch Linux:

$ yay -S python-pysnooper

License

Copyright (c) 2019 Ram Rachum and collaborators, released under the MIT license.

I provide Development services in Python and Django and I give Python workshops to teach people Python and related topics.

Media Coverage

Hacker News thread and /r/Python Reddit thread (22 April 2019)

Owner
Ram Rachum
Fellow of the @psf · Organizer at PyWeb-IL · Working on Google Cloud · My views are my own
Ram Rachum
Never use print for debugging again

PySnooper - Never use print for debugging again PySnooper is a poor man's debugger. If you've used Bash, it's like set -x for Python, except it's fanc

Ram Rachum 15.5k Jan 01, 2023
Cyberbrain: Python debugging, redefined.

Cyberbrain1(电子脑) aims to free programmers from debugging.

laike9m 2.3k Jan 07, 2023
A toolbar overlay for debugging Flask applications

Flask Debug-toolbar This is a port of the excellent django-debug-toolbar for Flask applications. Installation Installing is simple with pip: $ pip ins

863 Dec 29, 2022
Silky smooth profiling for Django

Silk Silk is a live profiling and inspection tool for the Django framework. Silk intercepts and stores HTTP requests and database queries before prese

Jazzband 3.7k Jan 01, 2023
AryaBota: An app to teach Python coding via gradual programming and visual output

AryaBota An app to teach Python coding, that gradually allows students to transition from using commands similar to natural language, to more Pythonic

5 Feb 08, 2022
Monitor Memory usage of Python code

Memory Profiler This is a python module for monitoring memory consumption of a process as well as line-by-line analysis of memory consumption for pyth

Fabian Pedregosa 80 Nov 18, 2022
Sampling profiler for Python programs

py-spy: Sampling profiler for Python programs py-spy is a sampling profiler for Python programs. It lets you visualize what your Python program is spe

Ben Frederickson 9.5k Jan 08, 2023
OpenCodeBlocks an open-source tool for modular visual programing in python

OpenCodeBlocks OpenCodeBlocks is an open-source tool for modular visual programing in python ! Although for now the tool is in Beta and features are c

Mathïs Fédérico 1.1k Jan 06, 2023
NoPdb: Non-interactive Python Debugger

NoPdb: Non-interactive Python Debugger Installation: pip install nopdb Docs: https://nopdb.readthedocs.io/ NoPdb is a programmatic (non-interactive) d

Ondřej Cífka 67 Oct 15, 2022
GEF (GDB Enhanced Features) - a modern experience for GDB with advanced debugging features for exploit developers & reverse engineers ☢

GEF (GDB Enhanced Features) - a modern experience for GDB with advanced debugging features for exploit developers & reverse engineers ☢

hugsy 5.2k Jan 01, 2023
Integration of IPython pdb

IPython pdb Use ipdb exports functions to access the IPython debugger, which features tab completion, syntax highlighting, better tracebacks, better i

Godefroid Chapelle 1.7k Jan 07, 2023
Winpdb Reborn - A GPL Python Debugger, reborn from the unmaintained Winpdb

Note from Philippe Fremy The port of winpdb-reborn to Python 3 / WxPython 4 is unfortunately not working very well. So Winpdb for Python 3 does not re

Philippe F 84 Dec 22, 2022
Sentry is cross-platform application monitoring, with a focus on error reporting.

Users and logs provide clues. Sentry provides answers. What's Sentry? Sentry is a service that helps you monitor and fix crashes in realtime. The serv

Sentry 32.9k Dec 31, 2022
VizTracer is a low-overhead logging/debugging/profiling tool that can trace and visualize your python code execution.

VizTracer is a low-overhead logging/debugging/profiling tool that can trace and visualize your python code execution.

2.8k Jan 08, 2023
Hunter is a flexible code tracing toolkit.

Overview docs tests package Hunter is a flexible code tracing toolkit, not for measuring coverage, but for debugging, logging, inspection and other ne

Ionel Cristian Mărieș 705 Dec 08, 2022
Full-screen console debugger for Python

PuDB: a console-based visual debugger for Python Its goal is to provide all the niceties of modern GUI-based debuggers in a more lightweight and keybo

Andreas Klöckner 2.6k Jan 01, 2023
A simple rubber duck debugger

Rubber Duck Debugger I found myself many times asking a question on StackOverflow or to one of my colleagues just for finding the solution simply by d

1 Nov 10, 2021
printstack is a Python package that adds stack trace links to the builtin print function, so that editors such as PyCharm can link you to the source of the print call.

printstack is a Python package that adds stack trace links to the builtin print function, so that editors such as PyCharm can link to the source of the print call.

101 Aug 26, 2022
Debugging manhole for python applications.

Overview docs tests package Manhole is in-process service that will accept unix domain socket connections and present the stacktraces for all threads

Ionel Cristian Mărieș 332 Dec 07, 2022
Visual profiler for Python

vprof vprof is a Python package providing rich and interactive visualizations for various Python program characteristics such as running time and memo

Nick Volynets 3.9k Jan 01, 2023