Sequence lineage information extracted from RKI sequence data repo

Overview

Pango lineage information for German SARS-CoV-2 sequences

This repository contains a join of the metadata and pango lineage tables of all German SARS-CoV-2 sequences published by the Robert-Koch-Institut on Github.

The data here is updated every hour, automatically through a Github action, so whenever new data appears in the RKI repo, you will see it here within at most an hour.

The resulting dataset can be downloaded here, beware it's currently around 50MB in size: https://raw.githubusercontent.com/corneliusroemer/desh-data/main/data/meta_lineages.csv

Omicron share plot

Omicron Logit Plot

Omicron Logit Plot

Description of data

Column description:

  • IMS_ID: Unique identifier of the sequence
  • DATE_DRAW: Date the sample was taken from the patient
  • SEQ_REASON: Reason for sequencing, one of:
    • X: Unknown
    • N: Random sampling
    • Y: Targeted sequencing (exact reason unknown)
    • A[<reason>]: Targeted sequencing because variant PCR indicated VOC
  • PROCESSING_DATE: Date the sample was processed by the RKI and added to Github repo
  • SENDING_LAB_PC: Postcode (PLZ) of lab that did the initial PCR
  • SEQUENCING_LAB_PC: Postcode (PLZ) of lab that did the sequencing
  • lineage: Pango lineage as reported by pangolin
  • scorpio_call: Alternative, rough, variant as determined by scorpio (part of pangolin), this is less precise but a bit more robust than pangolin.

Excerpt

Here are the first 10 lines of the dataset.

IMS_ID,DATE_DRAW,SEQ_REASON,PROCESSING_DATE,SENDING_LAB_PC,SEQUENCING_LAB_PC,lineage,scorpio_call
IMS-10294-CVDP-00001,2021-01-14,X,2021-01-25,40225,40225,B.1.1.297,
IMS-10025-CVDP-00001,2021-01-17,N,2021-01-26,10409,10409,B.1.389,
IMS-10025-CVDP-00002,2021-01-17,N,2021-01-26,10409,10409,B.1.258,
IMS-10025-CVDP-00003,2021-01-17,N,2021-01-26,10409,10409,B.1.177.86,
IMS-10025-CVDP-00004,2021-01-17,N,2021-01-26,10409,10409,B.1.389,
IMS-10025-CVDP-00005,2021-01-18,N,2021-01-26,10409,10409,B.1.160,
IMS-10025-CVDP-00006,2021-01-17,N,2021-01-26,10409,10409,B.1.1.297,
IMS-10025-CVDP-00007,2021-01-18,N,2021-01-26,10409,10409,B.1.177.81,
IMS-10025-CVDP-00008,2021-01-18,N,2021-01-26,10409,10409,B.1.177,
IMS-10025-CVDP-00009,2021-01-18,N,2021-01-26,10409,10409,B.1.1.7,Alpha (B.1.1.7-like)
IMS-10025-CVDP-00010,2021-01-17,N,2021-01-26,10409,10409,B.1.1.7,Alpha (B.1.1.7-like)
IMS-10025-CVDP-00011,2021-01-17,N,2021-01-26,10409,10409,B.1.389,

Suggested import into pandas

You can import the data into pandas as follows:

#%%
import pandas as pd

#%%
df = pd.read_csv(
    'https://raw.githubusercontent.com/corneliusroemer/desh-data/main/data/meta_lineages.csv',
    index_col=0,
    parse_dates=[1,3],
    infer_datetime_format=True,
    cache_dates=True,
    dtype = {'SEQ_REASON': 'category',
             'SENDING_LAB_PC': 'category',
             'SEQUENCING_LAB_PC': 'category',
             'lineage': 'category',
             'scorpio_call': 'category'
             }
)
#%%
df.rename(columns={
    'DATE_DRAW': 'date',
    'PROCESSING_DATE': 'processing_date',
    'SEQ_REASON': 'reason',
    'SENDING_LAB_PC': 'sending_pc',
    'SEQUENCING_LAB_PC': 'sequencing_pc',
    'lineage': 'lineage',
    'scorpio_call': 'scorpio'
    },
    inplace=True
)
df

License

The underlying files that I use as input are licensed by RKI under CC-BY 4.0, see more details here: https://github.com/robert-koch-institut/SARS-CoV-2-Sequenzdaten_aus_Deutschland#lizenz.

The software here is licensed under the "Unlicense". You can do with it whatever you want.

For the data, just cite the original source, no need to cite this repo since it's just a trivial join.

Owner
Cornelius Roemer
Cornelius Roemer
Readings for "A Unified View of Relational Deep Learning for Polypharmacy Side Effect, Combination Therapy, and Drug-Drug Interaction Prediction."

Polypharmacy - DDI - Synergy Survey The Survey Paper This repository accompanies our survey paper A Unified View of Relational Deep Learning for Polyp

AstraZeneca 79 Jan 05, 2023
ELSED: Enhanced Line SEgment Drawing

ELSED: Enhanced Line SEgment Drawing This repository contains the source code of ELSED: Enhanced Line SEgment Drawing the fastest line segment detecto

Iago Suárez 125 Dec 31, 2022
[Nature Machine Intelligence' 21] "Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in Artificial Intelligence"

[UCADI] COVID-19 Diagnosis With Federated Learning Intro We developed a Federated Learning (FL) Framework for global researchers to collaboratively tr

HUST EIC AI-LAB 30 Dec 12, 2022
This project uses ViT to perform image classification tasks on DATA set CIFAR10.

Vision-Transformer-Multiprocess-DistributedDataParallel-Apex Introduction This project uses ViT to perform image classification tasks on DATA set CIFA

Kaicheng Yang 3 Jun 03, 2022
Low-code/No-code approach for deep learning inference on devices

EzEdgeAI A concept project that uses a low-code/no-code approach to implement deep learning inference on devices. It provides a componentized framewor

On-Device AI Co., Ltd. 7 Apr 05, 2022
This is the official repository of Music Playlist Title Generation: A Machine-Translation Approach.

PlyTitle_Generation This is the official repository of Music Playlist Title Generation: A Machine-Translation Approach. The paper has been accepted by

SeungHeonDoh 6 Jan 03, 2022
IDM: An Intermediate Domain Module for Domain Adaptive Person Re-ID,

Intermediate Domain Module (IDM) This repository is the official implementation for IDM: An Intermediate Domain Module for Domain Adaptive Person Re-I

Yongxing Dai 87 Nov 22, 2022
Car Parking Tracker Using OpenCv

Car Parking Vacancy Tracker Using OpenCv I used basic image processing methods i

Adwait Kelkar 30 Dec 03, 2022
Background-Click Supervision for Temporal Action Localization

Background-Click Supervision for Temporal Action Localization This repository is the official implementation of BackTAL. In this work, we study the te

LeYang 221 Oct 09, 2022
[ICCV 2021] Relaxed Transformer Decoders for Direct Action Proposal Generation

RTD-Net (ICCV 2021) This repo holds the codes of paper: "Relaxed Transformer Decoders for Direct Action Proposal Generation", accepted in ICCV 2021. N

Multimedia Computing Group, Nanjing University 80 Nov 30, 2022
More Photos are All You Need: Semi-Supervised Learning for Fine-Grained Sketch Based Image Retrieval

More Photos are All You Need: Semi-Supervised Learning for Fine-Grained Sketch Based Image Retrieval, CVPR 2021. Ayan Kumar Bhunia, Pinaki nath Chowdh

Ayan Kumar Bhunia 22 Aug 27, 2022
Revisiting Temporal Alignment for Video Restoration

Revisiting Temporal Alignment for Video Restoration [arXiv] Kun Zhou, Wenbo Li, Liying Lu, Xiaoguang Han, Jiangbo Lu We provide our results at Google

52 Dec 25, 2022
Mscp jamf - Build compliance in jamf

mscp_jamf Build compliance in Jamf. This will build the following xml pieces to

Bob Gendler 3 Jul 25, 2022
A simplified framework and utilities for PyTorch

Here is Poutyne. Poutyne is a simplified framework for PyTorch and handles much of the boilerplating code needed to train neural networks. Use Poutyne

GRAAL/GRAIL 534 Dec 17, 2022
Convert dog pictures into various painting styles. Try LimnPet

LimnPet Cartoon stylization service project Try our service » Home page · Team notion · Members 목차 프로젝트 소개 프로젝트 목표 사용한 기술스택과 수행도구 팀원 구현 기능 주요 기능 추가 기능

LiJell 7 Jul 14, 2022
A PyTorch Toolbox for Face Recognition

FaceX-Zoo FaceX-Zoo is a PyTorch toolbox for face recognition. It provides a training module with various supervisory heads and backbones towards stat

JDAI-CV 1.6k Jan 06, 2023
Python library for science observations from the James Webb Space Telescope

JWST Calibration Pipeline JWST requires Python 3.7 or above and a C compiler for dependencies. Linux and MacOS platforms are tested and supported. Win

Space Telescope Science Institute 386 Dec 30, 2022
A simple implementation of Kalman filter in Multi Object Tracking

kalman Filter in Multi-object Tracking A simple implementation of Kalman filter in Multi Object Tracking 本实现是在https://github.com/liuchangji/kalman-fil

124 Dec 29, 2022