Source code for "OmniPhotos: Casual 360° VR Photography"

Overview

OmniPhotos: Casual 360° VR Photography

Project Page | Video | Paper | Demo | Data

This repository contains the source code for creating and viewing OmniPhotos – a new approach for casual 360° VR photography using a consumer 360° video camera.

OmniPhotos: Casual 360° VR Photography
Tobias Bertel, Mingze Yuan, Reuben Lindroos, Christian Richardt
ACM Transactions on Graphics (SIGGRAPH Asia 2020)

Demo

The quickest way to try out OmniPhotos is via our precompiled demo (610 MB). Download and unzip to get started. Documentation for the precompiled binaries, which can also be downloaded separately (25 MB), can be found in the downloaded demo directory.

For the demo to run smoothly, we recommend a recently updated Windows 10 machine with a discrete GPU.

Additional OmniPhotos

We provide 31 OmniPhotos for download:

  • 9 preprocessed datasets that are ready for viewing (3.2 GB zipped, 12.8 GB uncompressed)
  • 31 unprocessed datasets with their input videos, camera poses etc.; this includes the 9 preprocessed datasets (17.4 GB zipped, 17.9 GB uncompressed)

Note: A few of the .insv files are missing for the 5.7k datasets. If you need to process these from scratch (using the insv files) these files can be found here.

How to view OmniPhotos

OmniPhotos are viewed using the "Viewer" executable, either in windowed mode (default) or in a compatible VR headset (see below). To run the viewer executable on the preprocessed datasets above, run the command:

Viewer.exe path-to-datasets/Preprocessed/

with paths adjusted for your machine. The viewer will automatically load the first dataset in the directory (in alphabetical order) and give you the option to load any of the datasets in the directory.

If you would like to run the viewer with VR enabled, please ensure that the firmware for your HMD is updated, you have SteamVR installed on your machine, and then run the command:

Viewer.exe --vr path-to-datasets/Preprocessed/

The OmniPhotos viewer can also load a specific single dataset directly:

Viewer.exe [--vr] path-to-datasets/Preprocessed/Temple3/Config/config-viewer.yaml

How to preprocess datasets

If you would like to preprocess additional datasets, for example "Ship" in the "Unprocessed" directory, run the command:

Preprocessing.exe path-to-datasets/Unpreprocessed/Ship/Config/config-viewer.yaml

This will preprocess the dataset according to the options specified in the config file. Once the preprocessing is finished, the dataset can be opened in the Viewer.

For processing new datasets from scratch, please follow the detailed documentation at Python/preprocessing/readme.md.

Compiling from source

The OmniPhotos Preprocessing and Viewer applications are written in C++11, with some Python used for preparing datasets.

Both main applications and the included libraries use CMake as build system generator. We recommend CMake 3.16 or newer, but older 3.x versions might also work.

Our code has been developed and tested with Microsoft Visual Studio 2015 and 2019 (both 64 bit).

Required dependencies

  1. GLFW 3.3 (version 3.3.1 works)
  2. Eigen 3.3 (version 3.3.2 works)
    • Please note: Ceres (an optional dependency) requires Eigen version "3.3.90" (~Eigen master branch).
  3. OpenCV 4.2
    • OpenCV 4.2 includes DIS flow in the main distribution, so precompiled OpenCV can be used.
    • OpenCV 4.1.1 needs to be compiled from source with the optflow contrib package (for DIS flow).
    • We also support the CUDA Brox flow from the cudaoptflow module, if it is compiled in. In this case, tick USE_CUDA_IN_OPENCV in CMake.
  4. OpenGL 4.1: provided by the operating system
  5. glog (newer than 0.4.0 master works)
  6. gflags (version 2.2.2 works)

Included dependencies (in /src/3rdParty/)

  1. DearImGui 1.79: included automatically as a git submodule.
  2. GL3W
  3. JsonCpp 1.8.0: almalgamated version
  4. nlohmann/json 3.6.1
  5. OpenVR 1.10.30: enable with WITH_OPENVR in CMake.
  6. TCLAP
  7. tinyfiledialogs 3.3.8

Optional dependencies

  1. Ceres (with SuiteSparse) is required for the scene-adaptive proxy geometry fitting. Enable with USE_CERES in CMake.
  2. googletest (master): automatically added when WITH_TEST is enabled in CMake.

Citation

Please cite our paper if you use this code or any of our datasets:

@article{OmniPhotos,
  author    = {Tobias Bertel and Mingze Yuan and Reuben Lindroos and Christian Richardt},
  title     = {{OmniPhotos}: Casual 360° {VR} Photography},
  journal   = {ACM Transactions on Graphics},
  year      = {2020},
  volume    = {39},
  number    = {6},
  pages     = {266:1--12},
  month     = dec,
  issn      = {0730-0301},
  doi       = {10.1145/3414685.3417770},
  url       = {https://richardt.name/omniphotos/},
}

Acknowledgements

We thank the reviewers for their thorough feedback that has helped to improve our paper. We also thank Peter Hedman, Ana Serrano and Brian Cabral for helpful discussions, and Benjamin Attal for his layered mesh rendering code.

This work was supported by EU Horizon 2020 MSCA grant FIRE (665992), the EPSRC Centre for Doctoral Training in Digital Entertainment (EP/L016540/1), RCUK grant CAMERA (EP/M023281/1), an EPSRC-UKRI Innovation Fellowship (EP/S001050/1), a Rabin Ezra Scholarship and an NVIDIA Corporation GPU Grant.

Comments
  • Documentation pipeline update

    Documentation pipeline update

    Pipeline to automatically create documenation on read the docs using doxygen.

    • [ ] link to github page on index.html (mainpage.hpp)
    • [ ] add documentation convention to docs\README.md
    • [ ] fork branch from cr333/main and apply changes to that
    • [ ] create new PR from forked branch
    opened by reubenlindroos 1
  • Adds a progress bar when circleselector is running

    Adds a progress bar when circleselector is running

    Also improves speed of the circleselector module by ~50%

    Todo:

    • [x] add tqdm to requirements.txt
    • [x] np.diffs for find_path_length
    • [x] atomic lock for incrementing the progress bar?
    opened by reubenlindroos 0
  • Circle Selector

    Circle Selector

    • [x] clean up requirements.txt
    • [x] save plot of heatmaps to the cache/dataset directory.
    • [x] move json file to capture directory
    • [x] update the template with option to switch off circlefitting
    • [x] update template to remove some of the options (e.g op_filename_expression)
    • [x] Update README.md with automatic circle selection (section 2.2)
    • [x] Update documentation for installation?
    • [x] Linting (spacing), comment convention, Pep convention
    • [x] sort imports
    • [x] replace op_filename_epression with original_filename_expression

    cv_utils

    • [x] remove extra copy of computeColor
    • [x] change pjoin to os.path.join
    • [x] add more documentation for parameters in cv_utils (change lookatang to look_at_angle)
    • [x] 'nxt' to 'next'
    • [x] comment on line 100 (slice_equirect)

    datatypes

    • [x] more comments on some of the methods in PointDict
    opened by reubenlindroos 0
  • Documentation pipeline update

    Documentation pipeline update

    Pipeline to automatically create documenation on read the docs using doxygen.

    • [x] link to github page on index.html (mainpage.hpp)
    • [x] add documentation convention to docs\README.md
    • [x] fork branch from cr333/main and apply changes to that
    • [x] create new PR from forked branch
    • [x] remove documentation for header comment block in docs/README.md
    • [x] cleanup index.rst (try removing, see if sphinx can build anyway)
    • [ ] mainpage.hpp cleanup (capitalise, centralise)
    • [x] clarify line 48 in README.md
    opened by reubenlindroos 0
  • Demo updated

    Demo updated

    Converts demo documentation files from rst and based in sphinx to be hosted in Github. The sites markdown API now renders the documentation files rather than using sphinx + rtd.

    opened by reubenlindroos 0
  • Adds build test to master branch on push and PR

    Adds build test to master branch on push and PR

    build

    • [ ] change actions to not send email for every build
    • [x] fix requested changes
    • [x] make into squash merge to not mess with main branch history
    • [x] group build steps (building dependencies which ahve been left seperate for debugging purposes)
    • [x] check glog build variables in cmake (e.g BUILD_TEST should not be enabled)
    • [x] check eigen warnings in build log
    • [x] check if precompiled headers might speed up build
    • [x] check if multithread build could be used
    • [x] remove verbose flag from extraction of opencv

    test

    • [x] add test data download
    • [x] reduce size of test dataset
    • [x] check what happens on failure
    • [ ] check if we can "publish" test results (xml?)
    opened by reubenlindroos 0
  • Get problems while preprocessing

    Get problems while preprocessing

    I did download all of those binary files from here:https://github.com/cr333/OmniPhotos/releases/download/v1.1/OmniPhotos-v1.1-win10-x64.zip

    And I did put ffmpeg.exe into system Path. However, Im getting errors saying this below:

    $ ./preproc/preproc.exe -c preproc-config-template.yaml [23276] Failed to execute script 'main' due to unhandled exception! Traceback (most recent call last): File "main.py", line 24, in File "preproc_app.py", line 39, in init File "data_preprocessor.py", line 32, in init File "abs_preprocessor.py", line 70, in init File "abs_preprocessor.py", line 225, in load_origin_data_info File "ffmpeg_probe.py", line 20, in probe File "subprocess.py", line 800, in init File "subprocess.py", line 1207, in _execute_child FileNotFoundError: [WinError 2]

    image

    opened by BlairLeng 2
Releases(v1.1)
Owner
Christian Richardt
Christian Richardt
Poplar implementation of "Bundle Adjustment on a Graph Processor" (CVPR 2020)

Poplar Implementation of Bundle Adjustment using Gaussian Belief Propagation on Graphcore's IPU Implementation of CVPR 2020 paper: Bundle Adjustment o

Joe Ortiz 34 Dec 05, 2022
An implementation for the loss function proposed in Decoupled Contrastive Loss paper.

Decoupled-Contrastive-Learning This repository is an implementation for the loss function proposed in Decoupled Contrastive Loss paper. Requirements P

Ramin Nakhli 71 Dec 04, 2022
Transferable Unrestricted Attacks, which won 1st place in CVPR’21 Security AI Challenger: Unrestricted Adversarial Attacks on ImageNet.

Transferable Unrestricted Adversarial Examples This is the PyTorch implementation of the Arxiv paper: Towards Transferable Unrestricted Adversarial Ex

equation 16 Dec 29, 2022
Self Driving RC Car Code

Derp Learning Derp Learning is a Python package that collects data, trains models, and then controls an RC car for track racing. Hardware You will nee

Not Karol 39 Dec 07, 2022
Re-implementation of the Noise Contrastive Estimation algorithm for pyTorch, following "Noise-contrastive estimation: A new estimation principle for unnormalized statistical models." (Gutmann and Hyvarinen, AISTATS 2010)

Noise Contrastive Estimation for pyTorch Overview This repository contains a re-implementation of the Noise Contrastive Estimation algorithm, implemen

Denis Emelin 42 Nov 24, 2022
Official PyTorch Implementation of Rank & Sort Loss [ICCV2021]

Rank & Sort Loss for Object Detection and Instance Segmentation The official implementation of Rank & Sort Loss. Our implementation is based on mmdete

Kemal Oksuz 229 Dec 20, 2022
NeoPlay is the project dedicated to ESport events.

NeoPlay is the project dedicated to ESport events. On this platform users can participate in tournaments with prize pools as well as create their own tournaments.

3 Dec 18, 2021
Lenia - Mathematical Life Forms

For full version list, see Timeline in Lenia portal [2020-10-13] Update Python version with multi-kernel and multi-channel extensions (v3.4 LeniaNDK.p

Bert Chan 3.1k Dec 28, 2022
Recurrent Neural Network Tutorial, Part 2 - Implementing a RNN in Python and Theano

Please read the blog post that goes with this code! Jupyter Notebook Setup System Requirements: Python, pip (Optional) virtualenv To start the Jupyter

Denny Britz 863 Dec 15, 2022
NeuralForecast is a Python library for time series forecasting with deep learning models

NeuralForecast is a Python library for time series forecasting with deep learning models. It includes benchmark datasets, data-loading utilities, evaluation functions, statistical tests, univariate m

Nixtla 1.1k Jan 03, 2023
ECAENet (TensorFlow and Keras)

ECAENet: EfficientNet with Efficient Channel Attention for Plant Species Recognition (SCI:Q3) (Journal of Intelligent & Fuzzy Systems)

4 Dec 22, 2022
PyTorch code for Composing Partial Differential Equations with Physics-Aware Neural Networks

FInite volume Neural Network (FINN) This repository contains the PyTorch code for models, training, and testing, and Python code for data generation t

Cognitive Modeling 20 Dec 18, 2022
Educational 2D SLAM implementation based on ICP and Pose Graph

slam-playground Educational 2D SLAM implementation based on ICP and Pose Graph How to use: Use keyboard arrow keys to navigate robot. Press 'r' to vie

Kirill 19 Dec 17, 2022
Shape-Adaptive Selection and Measurement for Oriented Object Detection

Source Code of AAAI22-2171 Introduction The source code includes training and inference procedures for the proposed method of the paper submitted to t

houliping 24 Nov 29, 2022
FOSS Digital Asset Distribution Platform built on Frappe.

Digistore FOSS Digital Assets Marketplace. Distribute digital assets, like a pro. Video Demo Here Features Create, attach and list digital assets (PDF

Mohammad Hussain Nagaria 30 Dec 08, 2022
Pytorch implementation of the paper: "A Unified Framework for Separating Superimposed Images", in CVPR 2020.

Deep Adversarial Decomposition PDF | Supp | 1min-DemoVideo Pytorch implementation of the paper: "Deep Adversarial Decomposition: A Unified Framework f

Zhengxia Zou 72 Dec 18, 2022
Official implementation for paper Render In-between: Motion Guided Video Synthesis for Action Interpolation

Render In-between: Motion Guided Video Synthesis for Action Interpolation [Paper] [Supp] [arXiv] [4min Video] This is the official Pytorch implementat

8 Oct 27, 2022
A machine learning project which can detect and predict the skin disease through image recognition.

ML-Project-2021 A machine learning project which can detect and predict the skin disease through image recognition. The dataset used for this is the H

Debshishu Ghosh 1 Jan 13, 2022
TensorFlow ROCm port

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

ROCm Software Platform 622 Jan 09, 2023