Second-order Attention Network for Single Image Super-resolution (CVPR-2019)

Related tags

Deep LearningSAN
Overview

Second-order Attention Network for Single Image Super-resolution (CVPR-2019)

"Second-order Attention Network for Single Image Super-resolution" is published on CVPR-2019. The code is built on RCAN(pytorch) and tested on Ubuntu 16.04 (Pytorch 0.4.0)

Main Contents

1. Introduction

  • Abstract: Recently, deep convolutional neural networks (CNNs) have been widely explored in single image super-resolution (SISR) and obtained remarkable performance. However, most of the existing CNN-based SISR methods mainly focus on wider or deeper architecture design, neglecting to explore the feature correlations of intermediate layers, hence hindering the representational power of CNNs. To address this issue, in this paper, we propose a second-order attention network (SAN) for more powerful feature expression and feature correlation learning. Specifically, a novel train- able second-order channel attention (SOCA) module is developed to adaptively rescale the channel-wise features by using second-order feature statistics for more discriminative representations. Furthermore, we present a non-locally enhanced residual group (NLRG) structure, which not only incorporates non-local operations to capture long-distance spatial contextual information, but also contains repeated local-source residual attention groups (LSRAG) to learn increasingly abstract feature representations. Experimental results demonstrate the superiority of our SAN network over state-of-the-art SISR methods in terms of both quantitative metrics and visual quality.

2. Train code

Prepare training datasets

    1. Download the DIV2K dataset (900 HR images) from the link DIV2K.
    1. Set '--dir_data' as the HR and LR image path.

Train the model

  • You can retrain the model:
      1. CD to 'TrainCode/code';
      1. Run the following scripts to train the models:

BI degradation, scale 2, 3, 4,8

input= 48x48, output = 96x96

python main.py --model san --save save_name --scale 2 --n_resgroups 20 --n_resblocks 10 --n_feats 64 --reset --chop --save_results --patch_size 96

input= 48x48, output = 144x144

python main.py --model san --save save_name --scale 3 --n_resgroups 20 --n_resblocks 10 --n_feats 64 --reset --chop --save_results --patch_size 96

input= 48x48, output = 192x192

python main.py --model san --save save_name --scale 4 --n_resgroups 20 --n_resblocks 10 --n_feats 64 --reset --chop --save_results --patch_size 96

input= 48x48, output = 392x392

python main.py --model san --save save_name --scale 8 --n_resgroups 20 --n_resblocks 10 --n_feats 64 --reset --chop --save_results --patch_size 96

3. Test code

BI degradation, scale 2, 3, 4,8

SAN_2x

python main.py --model san --data_test MyImage --save save_name --scale 2 --n_resgroups 20 --n_resblocks 10 --n_feats 64 --reset --chop --save_results --test_only --testpath 'your path' --testset Set5 --pre_train ../model/SAN_BIX2.pt

SAN_3x

python main.py --model san --data_test MyImage --save save_name --scale 3 --n_resgroups 20 --n_resblocks 10 --n_feats 64 --reset --chop --save_results --test_only --testpath 'your path' --testset Set5 --pre_train ../model/SAN_BIX3.pt

SAN_4x

python main.py --model san --data_test MyImage --save save_name --scale 4 --n_resgroups 20 --n_resblocks 10 --n_feats 64 --reset --chop --save_results --test_only --testpath 'your path' --testset Set5 --pre_train ../model/SAN_BIX4.pt

SAN_8x

python main.py --model san --data_test MyImage --save save_name --scale 8 --n_resgroups 20 --n_resblocks 10 --n_feats 64 --reset --chop --save_results --test_only --testpath 'your path' --testset Set5 --pre_train ../model/SAN_BIX8.pt

4. Results

5. Citation

If the the work or the code is helpful, please cite the following papers

@inproceedings{dai2019second,

title={Second-order Attention Network for Single Image Super-Resolution}, author={Dai, Tao and Cai, Jianrui and Zhang, Yongbing and Xia, Shu-Tao and Zhang, Lei}, booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition}, pages={11065--11074}, year={2019} }

@inproceedings{zhang2018image,

title={Image super-resolution using very deep residual channel attention networks}, author={Zhang, Yulun and Li, Kunpeng and Li, Kai and Wang, Lichen and Zhong, Bineng and Fu, Yun}, booktitle={Proceedings of the European Conference on Computer Vision (ECCV)}, pages={286--301}, year={2018} }

@inproceedings{li2017second, title={Is second-order information helpful for large-scale visual recognition?}, author={Li, Peihua and Xie, Jiangtao and Wang, Qilong and Zuo, Wangmeng}, booktitle={Proceedings of the IEEE International Conference on Computer Vision}, pages={2070--2078}, year={2017} }

6. Acknowledge

The code is built on RCAN (Pytorch) and EDSR (Pytorch). We thank the authors for sharing the codes.

Official repository for Fourier model that can generate periodic signals

Conditional Generation of Periodic Signals with Fourier-Based Decoder Jiyoung Lee, Wonjae Kim, Daehoon Gwak, Edward Choi This repository provides offi

8 May 25, 2022
Official PyTorch implementation of the ICRA 2021 paper: Adversarial Differentiable Data Augmentation for Autonomous Systems.

Adversarial Differentiable Data Augmentation This repository provides the official PyTorch implementation of the ICRA 2021 paper: Adversarial Differen

Manli 3 Oct 15, 2022
Implementation for paper MLP-Mixer: An all-MLP Architecture for Vision

MLP Mixer Implementation for paper MLP-Mixer: An all-MLP Architecture for Vision. Give us a star if you like this repo. Author: Github: bangoc123 Emai

Ngoc Nguyen Ba 86 Dec 10, 2022
Implementation of the Point Transformer layer, in Pytorch

Point Transformer - Pytorch Implementation of the Point Transformer self-attention layer, in Pytorch. The simple circuit above seemed to have allowed

Phil Wang 501 Jan 03, 2023
Pytorch implementation for A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose

A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose Paper | Website | Data A-NeRF: Articulated Neural Radiance F

Shih-Yang Su 172 Dec 22, 2022
Code and data to accompany the camera-ready version of "Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation" in EMNLP 2021

Code and data to accompany the camera-ready version of "Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation" in EMNLP 2021

Mozhdeh Gheini 16 Jul 16, 2022
Source code of our BMVC 2021 paper: AniFormer: Data-driven 3D Animation with Transformer

AniFormer This is the PyTorch implementation of our BMVC 2021 paper AniFormer: Data-driven 3D Animation with Transformer. Haoyu Chen, Hao Tang, Nicu S

24 Nov 02, 2022
Implementation of Continuous Sparsification, a method for pruning and ticket search in deep networks

Continuous Sparsification Implementation of Continuous Sparsification (CS), a method based on l_0 regularization to find sparse neural networks, propo

Pedro Savarese 23 Dec 07, 2022
Data Engineering ZoomCamp

Data Engineering ZoomCamp I'm partaking in a Data Engineering Bootcamp / Zoomcamp and will be tracking my progress here. I can't promise these notes w

Aaron 61 Jan 06, 2023
Generating Radiology Reports via Memory-driven Transformer

R2Gen This is the implementation of Generating Radiology Reports via Memory-driven Transformer at EMNLP-2020. Citations If you use or extend our work,

CUHK-SZ NLP Group 101 Dec 13, 2022
Official Implementation of SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations

Official Implementation of SimIPU SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations Since

Zhyever 37 Dec 01, 2022
End-to-End Dense Video Captioning with Parallel Decoding (ICCV 2021)

PDVC Official implementation for End-to-End Dense Video Captioning with Parallel Decoding (ICCV 2021) [paper] [valse论文速递(Chinese)] This repo supports:

Teng Wang 118 Dec 16, 2022
A PyTorch implementation of "Capsule Graph Neural Network" (ICLR 2019).

CapsGNN ⠀⠀ A PyTorch implementation of Capsule Graph Neural Network (ICLR 2019). Abstract The high-quality node embeddings learned from the Graph Neur

Benedek Rozemberczki 1.2k Jan 02, 2023
Implementation of SwinTransformerV2 in TensorFlow.

SwinTransformerV2-TensorFlow A TensorFlow implementation of SwinTransformerV2 by Microsoft Research Asia, based on their official implementation of Sw

Phan Nguyen 2 May 30, 2022
Multi-Target Adversarial Frameworks for Domain Adaptation in Semantic Segmentation

Multi-Target Adversarial Frameworks for Domain Adaptation in Semantic Segmentation Paper Multi-Target Adversarial Frameworks for Domain Adaptation in

Valeo.ai 20 Jun 21, 2022
We have made you a wrapper you can't refuse

We have made you a wrapper you can't refuse We have a vibrant community of developers helping each other in our Telegram group. Join us! Stay tuned fo

20.6k Jan 09, 2023
A light-weight image labelling tool for Python designed for creating segmentation data sets.

An image labelling tool for creating segmentation data sets, for Django and Flask.

117 Nov 21, 2022
A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Note: This is an alpha (preview) version which is still under refining. nn-Meter is a novel and efficient system to accurately predict the inference l

Microsoft 244 Jan 06, 2023
Generalized Data Weighting via Class-level Gradient Manipulation

Generalized Data Weighting via Class-level Gradient Manipulation This repository is the official implementation of Generalized Data Weighting via Clas

18 Nov 12, 2022
Cross View SLAM

Cross View SLAM This is the associated code and dataset repository for our paper I. D. Miller et al., "Any Way You Look at It: Semantic Crossview Loca

Ian D. Miller 99 Dec 09, 2022