Second-order Attention Network for Single Image Super-resolution (CVPR-2019)

Related tags

Deep LearningSAN
Overview

Second-order Attention Network for Single Image Super-resolution (CVPR-2019)

"Second-order Attention Network for Single Image Super-resolution" is published on CVPR-2019. The code is built on RCAN(pytorch) and tested on Ubuntu 16.04 (Pytorch 0.4.0)

Main Contents

1. Introduction

  • Abstract: Recently, deep convolutional neural networks (CNNs) have been widely explored in single image super-resolution (SISR) and obtained remarkable performance. However, most of the existing CNN-based SISR methods mainly focus on wider or deeper architecture design, neglecting to explore the feature correlations of intermediate layers, hence hindering the representational power of CNNs. To address this issue, in this paper, we propose a second-order attention network (SAN) for more powerful feature expression and feature correlation learning. Specifically, a novel train- able second-order channel attention (SOCA) module is developed to adaptively rescale the channel-wise features by using second-order feature statistics for more discriminative representations. Furthermore, we present a non-locally enhanced residual group (NLRG) structure, which not only incorporates non-local operations to capture long-distance spatial contextual information, but also contains repeated local-source residual attention groups (LSRAG) to learn increasingly abstract feature representations. Experimental results demonstrate the superiority of our SAN network over state-of-the-art SISR methods in terms of both quantitative metrics and visual quality.

2. Train code

Prepare training datasets

    1. Download the DIV2K dataset (900 HR images) from the link DIV2K.
    1. Set '--dir_data' as the HR and LR image path.

Train the model

  • You can retrain the model:
      1. CD to 'TrainCode/code';
      1. Run the following scripts to train the models:

BI degradation, scale 2, 3, 4,8

input= 48x48, output = 96x96

python main.py --model san --save save_name --scale 2 --n_resgroups 20 --n_resblocks 10 --n_feats 64 --reset --chop --save_results --patch_size 96

input= 48x48, output = 144x144

python main.py --model san --save save_name --scale 3 --n_resgroups 20 --n_resblocks 10 --n_feats 64 --reset --chop --save_results --patch_size 96

input= 48x48, output = 192x192

python main.py --model san --save save_name --scale 4 --n_resgroups 20 --n_resblocks 10 --n_feats 64 --reset --chop --save_results --patch_size 96

input= 48x48, output = 392x392

python main.py --model san --save save_name --scale 8 --n_resgroups 20 --n_resblocks 10 --n_feats 64 --reset --chop --save_results --patch_size 96

3. Test code

BI degradation, scale 2, 3, 4,8

SAN_2x

python main.py --model san --data_test MyImage --save save_name --scale 2 --n_resgroups 20 --n_resblocks 10 --n_feats 64 --reset --chop --save_results --test_only --testpath 'your path' --testset Set5 --pre_train ../model/SAN_BIX2.pt

SAN_3x

python main.py --model san --data_test MyImage --save save_name --scale 3 --n_resgroups 20 --n_resblocks 10 --n_feats 64 --reset --chop --save_results --test_only --testpath 'your path' --testset Set5 --pre_train ../model/SAN_BIX3.pt

SAN_4x

python main.py --model san --data_test MyImage --save save_name --scale 4 --n_resgroups 20 --n_resblocks 10 --n_feats 64 --reset --chop --save_results --test_only --testpath 'your path' --testset Set5 --pre_train ../model/SAN_BIX4.pt

SAN_8x

python main.py --model san --data_test MyImage --save save_name --scale 8 --n_resgroups 20 --n_resblocks 10 --n_feats 64 --reset --chop --save_results --test_only --testpath 'your path' --testset Set5 --pre_train ../model/SAN_BIX8.pt

4. Results

5. Citation

If the the work or the code is helpful, please cite the following papers

@inproceedings{dai2019second,

title={Second-order Attention Network for Single Image Super-Resolution}, author={Dai, Tao and Cai, Jianrui and Zhang, Yongbing and Xia, Shu-Tao and Zhang, Lei}, booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition}, pages={11065--11074}, year={2019} }

@inproceedings{zhang2018image,

title={Image super-resolution using very deep residual channel attention networks}, author={Zhang, Yulun and Li, Kunpeng and Li, Kai and Wang, Lichen and Zhong, Bineng and Fu, Yun}, booktitle={Proceedings of the European Conference on Computer Vision (ECCV)}, pages={286--301}, year={2018} }

@inproceedings{li2017second, title={Is second-order information helpful for large-scale visual recognition?}, author={Li, Peihua and Xie, Jiangtao and Wang, Qilong and Zuo, Wangmeng}, booktitle={Proceedings of the IEEE International Conference on Computer Vision}, pages={2070--2078}, year={2017} }

6. Acknowledge

The code is built on RCAN (Pytorch) and EDSR (Pytorch). We thank the authors for sharing the codes.

Ratatoskr: Worcester Tech's conference scheduling system

Ratatoskr: Worcester Tech's conference scheduling system In Norse mythology, Ratatoskr is a squirrel who runs up and down the world tree Yggdrasil to

4 Dec 22, 2022
The Python3 import playground

The Python3 import playground I have been confused about python modules and packages, this text tries to clear the topic up a bit. Sources: https://ch

Michael Moser 5 Feb 22, 2022
Synthetic Humans for Action Recognition, IJCV 2021

SURREACT: Synthetic Humans for Action Recognition from Unseen Viewpoints GΓΌl Varol, Ivan Laptev and Cordelia Schmid, Andrew Zisserman, Synthetic Human

Gul Varol 59 Dec 14, 2022
Prevent `CUDA error: out of memory` in just 1 line of code.

🐨 Koila Koila solves CUDA error: out of memory error painlessly. Fix it with just one line of code, and forget it. πŸš€ Features πŸ™… Prevents CUDA error

RenChu Wang 1.7k Jan 02, 2023
Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

66 Dec 15, 2022
Creative Applications of Deep Learning w/ Tensorflow

Creative Applications of Deep Learning w/ Tensorflow This repository contains lecture transcripts and homework assignments as Jupyter Notebooks for th

Parag K Mital 1.5k Dec 30, 2022
Numenta Platform for Intelligent Computing is an implementation of Hierarchical Temporal Memory (HTM), a theory of intelligence based strictly on the neuroscience of the neocortex.

NuPIC Numenta Platform for Intelligent Computing The Numenta Platform for Intelligent Computing (NuPIC) is a machine intelligence platform that implem

Numenta 6.3k Dec 30, 2022
Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation

Implicit Internal Video Inpainting Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation paper | project

202 Dec 30, 2022
Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation

Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation By Qiang Zhou*, Zilong Huang*, Lichao Huang, Han Shen, Yon

Forest 117 Apr 01, 2022
Meta-meta-learning with evolution and plasticity

Evolve plastic networks to be able to automatically acquire novel cognitive (meta-learning) tasks

5 Jun 28, 2022
Non-stationary GP package written from scratch in PyTorch

NSGP-Torch Examples gpytorch model with skgpytorch # Import packages import torch from regdata import NonStat2D from gpytorch.kernels import RBFKernel

Zeel B Patel 1 Mar 06, 2022
curl-impersonate: A special compilation of curl that makes it impersonate Chrome & Firefox

curl-impersonate A special compilation of curl that makes it impersonate real browsers. It can impersonate the four major browsers: Chrome, Edge, Safa

lwthiker 1.9k Jan 03, 2023
cl;asification problem using classification models in supervised learning

wine-quality-predition---classification cl;asification problem using classification models in supervised learning Wine Quality Prediction Analysis - C

Vineeth Reddy Gangula 1 Jan 18, 2022
An OpenAI Gym environment for Super Mario Bros

gym-super-mario-bros An OpenAI Gym environment for Super Mario Bros. & Super Mario Bros. 2 (Lost Levels) on The Nintendo Entertainment System (NES) us

Andrew Stelmach 1 Jan 05, 2022
K Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching (To appear in RA-L 2022)

KCP The official implementation of KCP: k Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching, accepted for p

Yu-Kai Lin 109 Dec 14, 2022
Depth-Aware Video Frame Interpolation (CVPR 2019)

DAIN (Depth-Aware Video Frame Interpolation) Project | Paper Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang IEEE C

Wenbo Bao 7.7k Dec 31, 2022
Revisting Open World Object Detection

Revisting Open World Object Detection Installation See INSTALL.md. Dataset Our n

58 Dec 23, 2022
CS550 Machine Learning course project on CNN Detection.

CNN Detection (CS550 Machine Learning Project) Team Members (Tensor) : Yadava Kishore Chodipilli (11940310) Thashmitha BS (11941250) This is a work do

yaadava_kishore 2 Jan 30, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website β€’ Key Features β€’ How To Use β€’ Docs β€’

Pytorch Lightning 21.1k Dec 29, 2022
A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers.

Dying Light 2 PAKFile Utility A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers. This tool aims to make PAKFile (.pak files) modding a

RHQ Online 12 Aug 26, 2022