Source code of our TPAMI'21 paper Dual Encoding for Video Retrieval by Text and CVPR'19 paper Dual Encoding for Zero-Example Video Retrieval.

Overview

Dual Encoding for Video Retrieval by Text

Source code of our TPAMI'21 paper Dual Encoding for Video Retrieval by Text and CVPR'19 paper Dual Encoding for Zero-Example Video Retrieval.

image

Table of Contents

Environments

  • Ubuntu 16.04
  • CUDA 10.1
  • Python 3.8
  • PyTorch 1.5.1

We used Anaconda to setup a deep learning workspace that supports PyTorch. Run the following script to install the required packages.

conda create --name ws_dual_py3 python=3.8
conda activate ws_dual_py3
git clone https://github.com/danieljf24/hybrid_space.git
cd hybrid_space
pip install -r requirements.txt
conda deactivate

Dual Encoding on MSRVTT10K

Required Data

Run the following script to download and extract MSR-VTT (msrvtt10k-resnext101_resnet152.tar.gz(4.3G)) dataset and a pre-trained word2vec (vec500flickr30m.tar.gz(3.0G). The data can also be downloaded from Baidu pan (url, password:p3p0) or Google drive (url). For more information about the dataset, please refer to here. The extracted data is placed in $HOME/VisualSearch/.

ROOTPATH=$HOME/VisualSearch
mkdir -p $ROOTPATH && cd $ROOTPATH

# download and extract dataset
wget http://8.210.46.84:8787/msrvtt10k-resnext101_resnet152.tar.gz
tar zxf msrvtt10k-resnext101_resnet152.tar.gz -C $ROOTPATH

# download and extract pre-trained word2vec
wget http://lixirong.net/data/w2vv-tmm2018/word2vec.tar.gz
tar zxf word2vec.tar.gz -C $ROOTPATH

Model Training and Evaluation

Run the following script to train and evaluate Dual Encoding network with hybrid space on the official partition of MSR-VTT. The video features are the concatenation of ResNeXt-101 and ResNet-152 features. The code of video feature extraction we used in the paper is available at here.

conda activate ws_dual_py3
./do_all.sh msrvtt10k hybrid resnext101-resnet152

Running the script will do the following things:

  1. Train Dual Encoding network with hybrid space and select a checkpoint that performs best on the validation set as the final model. Notice that we only save the best-performing checkpoint on the validation set to save disk space.
  2. Evaluate the final model on the test set. Note that the dataset has already included vocabulary and concept annotations. If you would like to generate vocabulary and concepts by yourself, run the script ./do_vocab_concept.sh msrvtt10k 1 $ROOTPATH.

If you would like to train Dual Encoding network with the latent space learning (Conference Version), please run the following scrip:

./do_all.sh msrvtt10k latent resnext101-resnet152 $ROOTPATH

To train the model on the Test1k-Miech partition and Test1k-Yu partition of MSR-VTT, please run the following scrip:

./do_all.sh msrvtt10kmiech hybrid resnext101-resnet152 $ROOTPATH
./do_all.sh msrvtt10kyu hybrid resnext101-resnet152 $ROOTPATH

Evaluation using Provided Checkpoints

The overview of pre-trained checkpoints on MSR-VTT is as follows.

Split Pre-trained Checkpoints
Official msrvtt10k_model_best.pth.tar(264M)
Test1k-Miech msrvtt10kmiech_model_best.pth.tar(267M)
Test1k-Yu msrvtt10kyu_model_best.pth.tar(267M)

Note that if you would like to evaluate using our trained checkpoints, please make sure to use the vocabulary and concept annotations that are provided in the msrvtt10k-resnext101_resnet152.tar.gz.

On the official split

Run the following script to download and evaluate our trained checkpoints on the official split of MSR-VTT. The trained checkpoints can also be downloaded from Baidu pan (url, password:p3p0).

MODELDIR=$HOME/VisualSearch/checkpoints
mkdir -p $MODELDIR

# download trained checkpoints
wegt -P $MODELDIR http://8.210.46.84:8787/checkpoints/msrvtt10k_model_best.pth.tar

# evaluate on the official split of MSR-VTT
CUDA_VISIBLE_DEVICES=0 python tester.py --testCollection msrvtt10k --logger_name $MODELDIR  --checkpoint_name msrvtt10k_model_best.pth.tar

On Test1k-Miech and Test1k-Yu splits

In order to evaluate on Test1k-Miech and Test1k-Yu splits, please run the following script.

MODELDIR=$HOME/VisualSearch/checkpoints

# download trained checkpoints on Test1k-Miech
wegt -P $MODELDIR http://8.210.46.84:8787/checkpoints/msrvtt10kmiech_model_best.pth.tar

# evaluate on Test1k-Miech of MSR-VTT
CUDA_VISIBLE_DEVICES=0 python tester.py --testCollection msrvtt10kmiech --logger_name $MODELDIR  --checkpoint_name msrvtt10kmiech_model_best.pth.tar
MODELDIR=$HOME/VisualSearch/checkpoints

# download trained checkpoints on Test1k-Yu
wegt -P $MODELDIR http://8.210.46.84:8787/checkpoints/msrvtt10kyu_model_best.pth.tar

# evaluate on Test1k-Yu of MSR-VTT
CUDA_VISIBLE_DEVICES=0 python tester.py --testCollection msrvtt10kyu --logger_name $MODELDIR  --checkpoint_name msrvtt10kyu_model_best.pth.tar

Expected Performance

The expected performance of Dual Encoding on MSR-VTT is as follows. Notice that due to random factors in SGD based training, the numbers differ slightly from those reported in the paper.

Split Text-to-Video Retrieval Video-to-Text Retrieval SumR
[email protected] [email protected] [email protected] MedR mAP [email protected] [email protected] [email protected] MedR mAP
Official 11.8 30.6 41.8 17 21.4 21.6 45.9 58.5 7 10.3 210.2
Test1k-Miech 22.7 50.2 63.1 5 35.6 24.7 52.3 64.2 5 37.2 277.2
Test1k-Yu 21.5 48.8 60.2 6 34.0 21.7 49.0 61.4 6 34.6 262.6

Dual Encoding on VATEX

Required Data

Download VATEX dataset (vatex-i3d.tar.gz(3.0G)) and a pre-trained word2vec (vec500flickr30m.tar.gz(3.0G)). The data can also be downloaded from Baidu pan (url, password:p3p0) or Google drive (url). For more information about the dataset, please refer to here. Please extract data into $HOME/VisualSearch/.

Model Training and Evaluation

Run the following script to train and evaluate Dual Encoding network with hybrid space on VATEX.

# download and extract dataset
wget http://8.210.46.84:8787/vatex-i3d.tar.gz
tar zxf vatex-i3d.tar.gz -C $ROOTPATH

./do_all.sh vatex hybrid i3d_kinetics $ROOTPATH

Expected Performance

Run the following script to download and evaluate our trained model (vatex_model_best.pth.tar(230M)) on VATEX.

MODELDIR=$HOME/VisualSearch/checkpoints

# download trained checkpoints
wegt -P $MODELDIR http://8.210.46.84:8787/checkpoints/vatex_model_best.pth.tar

CUDA_VISIBLE_DEVICES=0 python tester.py --testCollection vatex --logger_name $MODELDIR  --checkpoint_name vatex_model_best.pth.tar

The expected performance of Dual Encoding with hybrid space learning on MSR-VTT is as follows.

Split Text-to-Video Retrieval Video-to-Text Retrieval SumR
[email protected] [email protected] [email protected] MedR mAP [email protected] [email protected] [email protected] MedR mAP
VATEX 35.8 72.8 82.9 2 52.0 47.5 76.0 85.3 2 39.1 400.3

Dual Encoding on Ad-hoc Video Search (AVS)

Required Data

The following datasets are used for training, validation and testing: the joint collection of MSR-VTT and TGIF, tv2016train and IACC.3. For more information about these datasets, please refer to here.

Frame-level feature data

Please download the frame-level features from Baidu pan (url, password:qwlc). The filename of feature data are summarized as follows.

Datasets 2048-dim ResNeXt-101 2048-dim ResNet-152
MSR-VTT msrvtt10k_ResNext-101.tar.gz msrvtt10k_ResNet-152.tar.gz
TGIF tgif_ResNext-101.tar.gz tgif_ResNet-152.tar.gz
tv2016train tv2016train_ResNext-101.tar.gz tv2016train_ResNet-152.tar.gz
IACC.3 iacc.3_ResNext-101.tar.gz iacc.3_ResNet-152.tar.gz

Note if you have already download MSR-VTT data we provide above, you need not download msrvtt10k_ResNext-101.tar.gz and msrvtt10k_ResNet-152.tar.gz.

Sentence data

Please download the above data, and run the following scripts to extract them into $HOME/VisualSearch/.

ROOTPATH=$HOME/VisualSearch

# extract ResNext-101
tar zxf tgif_ResNext-101.tar.gz -C $ROOTPATH
tar zxf msrvtt10k_ResNext-101.tar.gz -C $ROOTPATH
tar zxf tv2016train_ResNext-101.tar.gz -C $ROOTPATH
tar zxf iacc.3_ResNext-101.tar.gz -C $ROOTPATH

# extract ResNet-152
tar zxf tgif_ResNet-152.tar.gz -C $ROOTPATH
tar zxf msrvtt10k_ResNet-152.tar -C $ROOTPATH
tar zxf tv2016train_ResNet-152.tar.gz -C $ROOTPATH
tar zxf iacc.3_ResNet-152.tar.gz -C $ROOTPATH

# combine feature of tgif and msrvtt10k
./do_combine_features.sh

Train Dual Encoding model from scratch

ROOTPATH=$HOME/VisualSearch
trainCollection=tgif-msrvtt10k
overwrite=0

# Generate a vocabulary on the training set
./util/do_get_vocab.sh $trainCollection $ROOTPATH $overwrite

# Generate concepts according to video captions
./util/do_get_tags.sh $trainCollection $ROOTPATH $overwrite

# Generate video frame info
visual_feature=resnext101-resnet152
./util/do_get_frameInfo.sh $trainCollection $visual_feature $ROOTPATH $overwrite

# training and testing
./do_all_avs.sh $ROOTPATH

How to run Dual Encoding on other datasets?

Our code supports dataset structure:

  • One-folder structure: train, validation and test subset are stored in a folder.
  • Multiple-folder structure: train, validation and test subset are stored in three folders respectively.

One-folder structure

Store the train, validation and test subset into a folder in the following structure.

${collection}
├── FeatureData
│   └── ${feature_name}
│       ├── feature.bin
│       ├── shape.txt
│       └── id.txt
└── TextData
    └── ${collection}train.caption.txt
    └── ${collection}val.caption.txt
    └── ${collection}test.caption.txt
  • FeatureData: video frame features. Using txt2bin.py to convert video frame feature in the required binary format.
  • ${collection}train.caption.txt: training caption data.
  • ${collection}val.caption.txt: validation caption data.
  • ${collection}test.caption.txt: test caption data. The file structure is as follows, in which the video and sent in the same line are relevant.
video_id_1#1 sentence_1
video_id_1#2 sentence_2
...
video_id_n#1 sentence_k
...

Please run the script to generate vocabulary and concepts:

./util/do_vocab_concept.sh $collection 0 $ROOTPATH

Run the following script to train and evaluate Dual Encoding on your own dataset:

./do_all.sh ${collection} hybrid ${feature_name} ${rootpath}

Multiple-folder structure

Store the training, validation and test subsets into three folders in the following structure respectively.

${subset_name}
├── FeatureData
│   └── ${feature_name}
│       ├── feature.bin
│       ├── shape.txt
│       └── id.txt
└── TextData
    └── ${subset_name}.caption.txt
  • FeatureData: video frame features.
  • ${dsubset_name}.caption.txt: caption data of corresponding subset.

You can run the following script to check whether the data is ready:

./do_format_check.sh ${train_set} ${val_set} ${test_set} ${rootpath} ${feature_name}

where train_set, val_set and test_set indicate the name of training, validation and test set, respectively, ${rootpath} denotes the path where datasets are saved and feature_name is the video frame feature name.

Please run the script to generate vocabulary and concepts:

./util/do_vocab_concept.sh ${train_set} 0 $ROOTPATH

If you pass the format check, use the following script to train and evaluate Dual Encoding on your own dataset:

./do_all_multifolder.sh ${train_set} ${val_set} ${test_set} hybrid ${feature_name} ${rootpath}

References

If you find the package useful, please consider citing our TPAMI'21 or CVPR'19 paper:

@article{dong2021dual,
  title={Dual Encoding for Video Retrieval by Text},
  author={Dong, Jianfeng and Li, Xirong and Xu, Chaoxi and Yang, Xun and Yang, Gang and Wang, Xun and Wang, Meng},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  doi = {10.1109/TPAMI.2021.3059295},
  year={2021}
}
@inproceedings{cvpr2019-dual-dong,
title = {Dual Encoding for Zero-Example Video Retrieval},
author = {Jianfeng Dong and Xirong Li and Chaoxi Xu and Shouling Ji and Yuan He and Gang Yang and Xun Wang},
booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2019},
}
End-to-end pipeline for real-time scene text detection and recognition.

Real-time-Scene-Text-Detection-and-Recognition-System End-to-end pipeline for real-time scene text detection and recognition. The detection model use

Fangneng Zhan 89 Aug 04, 2022
POT : Python Optimal Transport

This open source Python library provide several solvers for optimization problems related to Optimal Transport for signal, image processing and machine learning.

Python Optimal Transport 1.7k Jan 04, 2023
CRAFT-Pyotorch:Character Region Awareness for Text Detection Reimplementation for Pytorch

CRAFT-Reimplementation Note:If you have any problems, please comment. Or you can join us weChat group. The QR code will update in issues #49 . Reimple

453 Dec 28, 2022
Can We Find Neurons that Cause Unrealistic Images in Deep Generative Networks?

Can We Find Neurons that Cause Unrealistic Images in Deep Generative Networks? Artifact Detection/Correction - Offcial PyTorch Implementation This rep

CHOI HWAN IL 23 Dec 20, 2022
Resizing Canny Countour In Python

Resizing_Canny_Countour Install Visual Studio Code , https://code.visualstudio.com/download Select Python and install with terminal( pip install openc

Walter Ng 1 Nov 07, 2021
graph learning code for ogb

The final code for OGB Installation Requirements: ogb=1.3.1 torch=1.7.0 torch-geometric=1.7.0 torch-scatter=2.0.6 torch-sparse=0.6.9 Baseline models T

PierreHao 20 Nov 10, 2022
InverseRenderNet: Learning single image inverse rendering, CVPR 2019.

InverseRenderNet: Learning single image inverse rendering !! Check out our new work InverseRenderNet++ paper and code, which improves the inverse rend

Ye Yu 141 Dec 20, 2022
📷 Face Recognition using Haar-Cascade Classifier, OpenCV, and Python

Face-Recognition-System Face Recognition using Haar-Cascade Classifier, OpenCV and Python. This project is based on face detection and face recognitio

1 Jan 10, 2022
A Python wrapper for Google Tesseract

Python Tesseract Python-tesseract is an optical character recognition (OCR) tool for python. That is, it will recognize and "read" the text embedded i

Matthias A Lee 4.6k Jan 06, 2023
Learning Camera Localization via Dense Scene Matching, CVPR2021

This repository contains code of our CVPR 2021 paper - "Learning Camera Localization via Dense Scene Matching" by Shitao Tang, Chengzhou Tang, Rui Hua

tangshitao 65 Dec 01, 2022
Repositório para registro de estudo da biblioteca opencv (Python)

OpenCV (Python) Objetivo do Repositório: Registrar avanços no estudo da biblioteca opencv. O repositório estará aberto a qualquer pessoa e há tambem u

1 Jun 14, 2022
Awesome multilingual OCR toolkits based on PaddlePaddle (practical ultra lightweight OCR system, provide data annotation and synthesis tools, support training and deployment among server, mobile, embedded and IoT devices)

English | 简体中文 Introduction PaddleOCR aims to create multilingual, awesome, leading, and practical OCR tools that help users train better models and a

27.5k Jan 08, 2023
Document manipulation detection with python

image manipulation detection task: -- tianchi function image segmentation salie

JiaKui Hu 3 Aug 22, 2022
Use Youdao OCR API to covert your clipboard image to text.

Alfred Clipboard OCR 注:本仓库基于 oott123/alfred-clipboard-ocr 的逻辑用 Python 重写,换用了有道 AI 的 API,准确率更高,有效防止百度导致隐私泄露等问题,并且有道 AI 初始提供的 50 元体验金对于其资费而言个人用户基本可以永久使用

Junlin Liu 6 Sep 19, 2022
Optical character recognition for Japanese text, with the main focus being Japanese manga

Manga OCR Optical character recognition for Japanese text, with the main focus being Japanese manga. It uses a custom end-to-end model built with Tran

Maciej Budyś 327 Jan 01, 2023
Thresholding-and-masking-using-OpenCV - Image Thresholding is used for image segmentation

Image Thresholding is used for image segmentation. From a grayscale image, thresholding can be used to create binary images. In thresholding we pick a threshold T.

Grace Ugochi Nneji 3 Feb 15, 2022
Multi-choice answer sheet correction system using computer vision with opencv & python.

Multi choice answer correction 🔴 5 answer sheet samples with a specific solution for detecting answers and sheet correction. 🔴 By running the soluti

Reza Firouzi 7 Mar 07, 2022
A set of workflows for corpus building through OCR, post-correction and normalisation

PICCL: Philosophical Integrator of Computational and Corpus Libraries PICCL offers a workflow for corpus building and builds on a variety of tools. Th

Language Machines 41 Dec 27, 2022
7th place solution

SIIM-FISABIO-RSNA-COVID-19-Detection 7th place solution Validation: We used iterative-stratification with 5 folds (https://github.com/trent-b/iterativ

11 Jul 17, 2022
Web interface for browsing arXiv papers

Currently, arxivbox considers only major computer vision and machine learning conferences

Ankan Kumar Bhunia 12 Sep 11, 2022