Code for Efficient Visual Pretraining with Contrastive Detection

Related tags

Deep Learningdetcon
Overview

Code for DetCon

This repository contains code for the ICCV 2021 paper "Efficient Visual Pretraining with Contrastive Detection" by Olivier J. Hénaff, Skanda Koppula, Jean-Baptiste Alayrac, Aaron van den Oord, Oriol Vinyals, João Carreira.

This repository includes sample code to run pretraining with DetCon. In particular, we're providing a sample script for generating the Felzenzwalb segmentations for ImageNet images (using skimage) and a pre-training experiment setup (dataloader, augmentation pipeline, optimization config, and loss definition) that describes the DetCon-B(YOL) model described in the paper. The original code uses a large grid of TPUs and internal infrastructure for training, but we've extracted the key DetCon loss+experiment in this folder so that external groups can have a reference should they want to explore a similar approaches.

This repository builds heavily from the BYOL open source release, so speed-up tricks and features in that setup may likely translate to the code here.

Running this code

Running ./setup.sh will create and activate a virtualenv and install all necessary dependencies. To enter the environment after running setup.sh, run source /tmp/detcon_venv/bin/activate.

Running bash test.sh will run a single training step on a mock image/Felzenszwalb mask as a simple validation that all dependencies are set up correctly and the DetCon pre-training can run smoothly. On our 16-core machine, running on CPU, we find this takes around 3-4 minutes.

A TFRecord dataset containing each ImageNet image, label, and its corresponding Felzenszwalb segmentation/mask can then be generated using the generate_fh_masks Python script. You will first have to download two pieces of ImageNet metadata into the same directory as the script:

wget https://raw.githubusercontent.com/tensorflow/models/master/research/slim/datasets/imagenet_metadata.txt wget https://raw.githubusercontent.com/tensorflow/models/master/research/slim/datasets/imagenet_lsvrc_2015_synsets.txt

And to run the multi-threaded mask generation script:

python generate_fh_masks_for_imagenet.py -- \
--train_directory=imagenet-train \
--output_directory=imagenet-train-fh

This single-machine, multi-threaded version of the mask generation script takes 2-3 days on a 16-core CPU machine to complete CPU-based processing of the ImageNet training and validation set. The script assumes the same ImageNet directory structure as github.com/tensorflow/models/blob/master/research/slim/datasets/build_imagenet_data.py (more details in the link).

You can then run the main training loop and execute multiple DetCon-B training steps by running from the parent directory the command:

python -m detcon.main_loop \
  --dataset_directory='/tmp/imagenet-fh-train' \
  --pretrain_epochs=100`

Note that you will need to update the dataset_directory flag, to point to the generated Felzenzwalb/image TFRecord dataset previously generated. Additionally, to use accelerators, users will need to install the correct version of jaxlib with CUDA support.

Citing this work

If you use this code in your work, please consider referencing our work:

@article{henaff2021efficient,
  title={{Efficient Visual Pretraining with Contrastive Detection}},
  author={H{\'e}naff, Olivier J and Koppula, Skanda and Alayrac, Jean-Baptiste and Oord, Aaron van den and Vinyals, Oriol and Carreira, Jo{\~a}o},
  journal={International Conference on Computer Vision},
  year={2021}
}

Disclaimer

This is not an officially supported Google product.

Owner
DeepMind
DeepMind
A PyTorch based deep learning library for drug pair scoring.

Documentation | External Resources | Datasets | Examples ChemicalX is a deep learning library for drug-drug interaction, polypharmacy side effect and

AstraZeneca 597 Dec 30, 2022
git《Tangent Space Backpropogation for 3D Transformation Groups》(CVPR 2021) GitHub:1]

LieTorch: Tangent Space Backpropagation Introduction The LieTorch library generalizes PyTorch to 3D transformation groups. Just as torch.Tensor is a m

Princeton Vision & Learning Lab 482 Jan 06, 2023
Self-supervised learning on Graph Representation Learning (node-level task)

graph_SSL Self-supervised learning on Graph Representation Learning (node-level task) How to run the code To run GRACE, sh run_GRACE.sh To run GCA, sh

Namkyeong Lee 3 Dec 31, 2021
NExT-QA: Next Phase of Question-Answering to Explaining Temporal Actions (CVPR2021)

NExT-QA We reproduce some SOTA VideoQA methods to provide benchmark results for our NExT-QA dataset accepted to CVPR2021 (with 1 'Strong Accept' and 2

Junbin Xiao 50 Nov 24, 2022
PyTorch implementation of Pay Attention to MLPs

gMLP PyTorch implementation of Pay Attention to MLPs. Quickstart Clone this repository. git clone https://github.com/jaketae/g-mlp.git Navigate to th

Jake Tae 34 Dec 13, 2022
[peer review] An Arbitrary Scale Super-Resolution Approach for 3D MR Images using Implicit Neural Representation

ArSSR This repository is the pytorch implementation of our manuscript "An Arbitrary Scale Super-Resolution Approach for 3-Dimensional Magnetic Resonan

Qing Wu 19 Dec 12, 2022
Graph neural network message passing reframed as a Transformer with local attention

Adjacent Attention Network An implementation of a simple transformer that is equivalent to graph neural network where the message passing is done with

Phil Wang 49 Dec 28, 2022
NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

5 Nov 03, 2022
Official Implementation of Swapping Autoencoder for Deep Image Manipulation (NeurIPS 2020)

Swapping Autoencoder for Deep Image Manipulation Taesung Park, Jun-Yan Zhu, Oliver Wang, Jingwan Lu, Eli Shechtman, Alexei A. Efros, Richard Zhang UC

449 Dec 27, 2022
K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce (EMNLP Founding 2021)

Introduction K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce. Installation PyTor

Xu Song 21 Nov 16, 2022
PyTorch Code of "Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spatiotemporal Dynamics"

Memory In Memory Networks It is based on the paper Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spati

Yang Li 12 May 30, 2022
《Single Image Reflection Removal Beyond Linearity》(CVPR 2019)

Single-Image-Reflection-Removal-Beyond-Linearity Paper Single Image Reflection Removal Beyond Linearity. Qiang Wen, Yinjie Tan, Jing Qin, Wenxi Liu, G

Qiang Wen 51 Jun 24, 2022
ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs

ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs This is the code of paper ConE: Cone Embeddings for Multi-Hop Reasoning over Knowl

MIRA Lab 33 Dec 07, 2022
This is a Python wrapper for TA-LIB based on Cython instead of SWIG.

TA-Lib This is a Python wrapper for TA-LIB based on Cython instead of SWIG. From the homepage: TA-Lib is widely used by trading software developers re

John Benediktsson 7.3k Jan 03, 2023
Official code repository for the work: "The Implicit Values of A Good Hand Shake: Handheld Multi-Frame Neural Depth Refinement"

Handheld Multi-Frame Neural Depth Refinement This is the official code repository for the work: The Implicit Values of A Good Hand Shake: Handheld Mul

55 Dec 14, 2022
Face recognition. Redefined.

FaceFinder Use a powerful CNN to identify faces in images! TABLE OF CONTENTS About The Project Built With Getting Started Prerequisites Installation U

BleepLogger 20 Jun 16, 2021
A simple and extensible library to create Bayesian Neural Network layers on PyTorch.

Blitz - Bayesian Layers in Torch Zoo BLiTZ is a simple and extensible library to create Bayesian Neural Network Layers (based on whats proposed in Wei

Pi Esposito 722 Jan 08, 2023
2021:"Bridging Global Context Interactions for High-Fidelity Image Completion"

TFill arXiv | Project This repository implements the training, testing and editing tools for "Bridging Global Context Interactions for High-Fidelity I

Chuanxia Zheng 111 Jan 08, 2023
Teaches a student network from the knowledge obtained via training of a larger teacher network

Distilling-the-knowledge-in-neural-network Teaches a student network from the knowledge obtained via training of a larger teacher network This is an i

Abhishek Sinha 146 Dec 11, 2022
Code for CVPR2021 paper "Robust Reflection Removal with Reflection-free Flash-only Cues"

Robust Reflection Removal with Reflection-free Flash-only Cues (RFC) Paper | To be released: Project Page | Video | Data Tensorflow implementation for

Chenyang LEI 162 Jan 05, 2023