An open source library for deep learning end-to-end dialog systems and chatbots.

Overview

License Apache 2.0 Python 3.6, 3.7 Downloads

DeepPavlov is an open-source conversational AI library built on TensorFlow, Keras and PyTorch.

DeepPavlov is designed for

  • development of production ready chat-bots and complex conversational systems,
  • research in the area of NLP and, particularly, of dialog systems.

Quick Links

Please leave us your feedback on how we can improve the DeepPavlov framework.

Models

Named Entity Recognition | Slot filling

Intent/Sentence Classification | Question Answering over Text (SQuAD)

Knowledge Base Question Answering

Sentence Similarity/Ranking | TF-IDF Ranking

Morphological tagging | Syntactic parsing

Automatic Spelling Correction | ELMo training and fine-tuning

Speech recognition and synthesis (ASR and TTS) based on NVIDIA NeMo

Entity Linking | Multitask BERT

Skills

Goal(Task)-oriented Bot | Seq2seq Goal-Oriented bot

Open Domain Questions Answering | eCommerce Bot

Frequently Asked Questions Answering | Pattern Matching

Embeddings

BERT embeddings for the Russian, Polish, Bulgarian, Czech, and informal English

ELMo embeddings for the Russian language

FastText embeddings for the Russian language

Auto ML

Tuning Models with Evolutionary Algorithm

Integrations

REST API | Socket API | Yandex Alice

Telegram | Microsoft Bot Framework

Amazon Alexa | Amazon AWS

Installation

  1. We support Linux and Windows platforms, Python 3.6 and Python 3.7

    • Python 3.5 is not supported!
    • installation for Windows requires Git(for example, git) and Visual Studio 2015/2017 with C++ build tools installed!
  2. Create and activate a virtual environment:

    • Linux
    python -m venv env
    source ./env/bin/activate
    
    • Windows
    python -m venv env
    .\env\Scripts\activate.bat
    
  3. Install the package inside the environment:

    pip install deeppavlov
    

QuickStart

There is a bunch of great pre-trained NLP models in DeepPavlov. Each model is determined by its config file.

List of models is available on the doc page in the deeppavlov.configs (Python):

from deeppavlov import configs

When you're decided on the model (+ config file), there are two ways to train, evaluate and infer it:

GPU requirements

To run supported DeepPavlov models on GPU you should have CUDA 10.0 installed on your host machine and TensorFlow with GPU support (tensorflow-gpu) installed in your python environment. Current supported TensorFlow version is 1.15.2. Run

pip install tensorflow-gpu==1.15.2

before installing model's package requirements to install supported tensorflow-gpu version.

Before making choice of an interface, install model's package requirements (CLI):

python -m deeppavlov install <config_path>
  • where <config_path> is path to the chosen model's config file (e.g. deeppavlov/configs/ner/slotfill_dstc2.json) or just name without .json extension (e.g. slotfill_dstc2)

Command line interface (CLI)

To get predictions from a model interactively through CLI, run

python -m deeppavlov interact <config_path> [-d]
  • -d downloads required data -- pretrained model files and embeddings (optional).

You can train it in the same simple way:

python -m deeppavlov train <config_path> [-d]

Dataset will be downloaded regardless of whether there was -d flag or not.

To train on your own data you need to modify dataset reader path in the train config doc. The data format is specified in the corresponding model doc page.

There are even more actions you can perform with configs:

python -m deeppavlov <action> <config_path> [-d]
  • <action> can be
    • download to download model's data (same as -d),
    • train to train the model on the data specified in the config file,
    • evaluate to calculate metrics on the same dataset,
    • interact to interact via CLI,
    • riseapi to run a REST API server (see doc),
    • telegram to run as a Telegram bot (see doc),
    • msbot to run a Miscrosoft Bot Framework server (see doc),
    • predict to get prediction for samples from stdin or from <file_path> if -f <file_path> is specified.
  • <config_path> specifies path (or name) of model's config file
  • -d downloads required data

Python

To get predictions from a model interactively through Python, run

from deeppavlov import build_model

model = build_model(<config_path>, download=True)

# get predictions for 'input_text1', 'input_text2'
model(['input_text1', 'input_text2'])
  • where download=True downloads required data from web -- pretrained model files and embeddings (optional),
  • <config_path> is path to the chosen model's config file (e.g. "deeppavlov/configs/ner/ner_ontonotes_bert_mult.json") or deeppavlov.configs attribute (e.g. deeppavlov.configs.ner.ner_ontonotes_bert_mult without quotation marks).

You can train it in the same simple way:

from deeppavlov import train_model 

model = train_model(<config_path>, download=True)
  • download=True downloads pretrained model, therefore the pretrained model will be, first, loaded and then train (optional).

Dataset will be downloaded regardless of whether there was -d flag or not.

To train on your own data you need to modify dataset reader path in the train config doc. The data format is specified in the corresponding model doc page.

You can also calculate metrics on the dataset specified in your config file:

from deeppavlov import evaluate_model 

model = evaluate_model(<config_path>, download=True)

There are also available integrations with various messengers, see Telegram Bot doc page and others in the Integrations section for more info.

Breaking Changes

Breaking changes in version 0.7.0

Breaking changes in version 0.6.0

  • REST API:
    • all models default endpoints were renamed to /model
    • by default model arguments names are taken from chainer.in configuration parameter instead of pre-set names from a settings file
    • swagger api endpoint moved from /apidocs to /docs
  • when using "max_proba": true in a proba2labels component for classification, it will return single label for every batch element instead of a list. One can set "top_n": 1 to get batches of single item lists as before

Breaking changes in version 0.5.0

  • dependencies have to be reinstalled for most pipeline configurations
  • models depending on tensorflow require CUDA 10.0 to run on GPU instead of CUDA 9.0
  • scikit-learn models have to be redownloaded or retrained

Breaking changes in version 0.4.0!

  • default target variable name for neural evolution was changed from MODELS_PATH to MODEL_PATH.

Breaking changes in version 0.3.0!

  • component option fit_on_batch in configuration files was removed and replaced with adaptive usage of the fit_on parameter.

Breaking changes in version 0.2.0!

  • utils module was moved from repository root in to deeppavlov module
  • ms_bot_framework_utils,server_utils, telegram utils modules was renamed to ms_bot_framework, server and telegram correspondingly
  • rename metric functions exact_match to squad_v2_em and squad_f1 to squad_v2_f1
  • replace dashes in configs name with underscores

Breaking changes in version 0.1.0!

  • As of version 0.1.0 all models, embeddings and other downloaded data for provided configurations are by default downloaded to the .deeppavlov directory in current user's home directory. This can be changed on per-model basis by modifying a ROOT_PATH variable or related fields one by one in model's configuration file.

  • In configuration files, for all features/models, dataset readers and iterators "name" and "class" fields are combined into the "class_name" field.

  • deeppavlov.core.commands.infer.build_model_from_config() was renamed to build_model and can be imported from the deeppavlov module directly.

  • The way arguments are passed to metrics functions during training and evaluation was changed and documented.

License

DeepPavlov is Apache 2.0 - licensed.

The Team

DeepPavlov is built and maintained by Neural Networks and Deep Learning Lab at MIPT.

Comments
  • Regarding Spelling Error model

    Regarding Spelling Error model

    Thanks for amazing toolkit :) Can you please share your views on below questions

    1. How does correct_prior & incorrect_prior calculation done in Error model ?
    2. How do we incorporate "count" with incorrect-correct pair e.g. if training data is in form of (intended_word, observed_word, count).
    3. Is there any other way we can combine LM score & EM score in LM beam search method ?

    Thanks a lot !!

    opened by smilenrhyme 26
  • Error while trying to get the probablities of the predicted entities using ontonotes_bert ner model

    Error while trying to get the probablities of the predicted entities using ontonotes_bert ner model

    Deeppavlov version: 0.12.1 Python version: 3.7.7 "return_probas"set to true in ner_ontonotes_bert config json Command: python -m deeppavlov interact F:\miniconda3\envs\ute_query_params_service\Lib\site-packages\deeppavlov\configs\ner\ner_ontonotes_bert.js Command string: London is in England. Full Traceback: [nltk_data] Downloading package punkt to [nltk_data] C:\Users\User\AppData\Roaming\nltk_data... [nltk_data] Package punkt is already up-to-date! [nltk_data] Downloading package stopwords to [nltk_data] C:\Users\User\AppData\Roaming\nltk_data... [nltk_data] Package stopwords is already up-to-date! [nltk_data] Downloading package perluniprops to [nltk_data] C:\Users\User\AppData\Roaming\nltk_data... [nltk_data] Package perluniprops is already up-to-date! [nltk_data] Downloading package nonbreaking_prefixes to [nltk_data] C:\Users\User\AppData\Roaming\nltk_data... [nltk_data] Package nonbreaking_prefixes is already up-to-date! WARNING:tensorflow:From f:\miniconda3\envs\ute_query_params_service\lib\site-packages\bert_dp\tokenization.py:125: The name tf.gfile.GFile is deprecated. Please use tf.io.gfile.GFile instead.

    2020-11-30 21:37:31.122 INFO in 'deeppavlov.core.data.simple_vocab'['simple_vocab'] at line 115: [loading vocabulary from C:\Users\User.deeppavlov\models\ner_ontonotes_bert\tag.dict] WARNING:tensorflow:From f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\core\models\tf_model.py:37: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead.

    WARNING:tensorflow:From f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\core\models\tf_model.py:222: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.

    WARNING:tensorflow:From f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\core\models\tf_model.py:222: The name tf.train.Optimizer is deprecated. Please use tf.compat.v1.train.Optimizer instead.

    WARNING:tensorflow:From f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\core\models\tf_model.py:193: The name tf.train.AdamOptimizer is deprecated. Please use tf.compat.v1.train.AdamOptimizer instead.

    WARNING:tensorflow:From f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\models\bert\bert_sequence_tagger.py:236: The name tf.ConfigProto is deprecated. Please use tf.compat.v1.ConfigProto instead.

    WARNING:tensorflow:From f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\models\bert\bert_sequence_tagger.py:314: The name tf.placeholder_with_default is deprecated. Please use tf.compat.v1.placeholder_with_default instead.

    WARNING:tensorflow:From f:\miniconda3\envs\ute_query_params_service\lib\site-packages\bert_dp\modeling.py:178: The name tf.variable_scope is deprecated. Please use tf.compat.v1.variable_scope instead.

    WARNING:tensorflow:From f:\miniconda3\envs\ute_query_params_service\lib\site-packages\bert_dp\modeling.py:418: The name tf.get_variable is deprecated. Please use tf.compat.v1.get_variable instead.

    WARNING:tensorflow:From f:\miniconda3\envs\ute_query_params_service\lib\site-packages\bert_dp\modeling.py:499: The name tf.assert_less_equal is deprecated. Please use tf.compat.v1.assert_less_equal instead.

    WARNING:tensorflow: The TensorFlow contrib module will not be included in TensorFlow 2.0. For more information, please see:

    • https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md
    • https://github.com/tensorflow/addons
    • https://github.com/tensorflow/io (for I/O related ops) If you depend on functionality not listed there, please file an issue.

    WARNING:tensorflow:From f:\miniconda3\envs\ute_query_params_service\lib\site-packages\bert_dp\modeling.py:366: calling dropout (from tensorflow.python.ops.nn_ops) with keep_prob is deprecated and will be removed in a future version. Instructions for updating: Please use rate instead of keep_prob. Rate should be set to rate = 1 - keep_prob. WARNING:tensorflow:From f:\miniconda3\envs\ute_query_params_service\lib\site-packages\bert_dp\modeling.py:680: dense (from tensorflow.python.layers.core) is deprecated and will be removed in a future version. Instructions for updating: Use keras.layers.Dense instead. WARNING:tensorflow:From f:\miniconda3\envs\ute_query_params_service\lib\site-packages\tensorflow_core\python\layers\core.py:187: Layer.apply (from tensorflow.python.keras.engine.base_layer) is deprecated and will be removed in a future version. Instructions for updating: Please use layer.__call__ method instead. WARNING:tensorflow:From f:\miniconda3\envs\ute_query_params_service\lib\site-packages\bert_dp\modeling.py:283: The name tf.erf is deprecated. Please use tf.math.erf instead.

    WARNING:tensorflow:Variable *= will be deprecated. Use var.assign(var * other) if you want assignment to the variable value or x = x * y if you want a new python Tensor object. WARNING:tensorflow:From f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\models\bert\bert_sequence_tagger.py:75: where (from tensorflow.python.ops.array_ops) is deprecated and will be removed in a future version. Instructions for updating: Use tf.where in 2.0, which has the same broadcast rule as np.where WARNING:tensorflow:From f:\miniconda3\envs\ute_query_params_service\lib\site-packages\tensorflow_core\contrib\crf\python\ops\crf.py:213: dynamic_rnn (from tensorflow.python.ops.rnn) is deprecated and will be removed in a future version. Instructions for updating: Please use keras.layers.RNN(cell), which is equivalent to this API WARNING:tensorflow:From f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\core\models\tf_model.py:234: The name tf.train.AdadeltaOptimizer is deprecated. Please use tf.compat.v1.train.AdadeltaOptimizer instead.

    WARNING:tensorflow:From f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\core\models\tf_model.py:131: The name tf.get_collection is deprecated. Please use tf.compat.v1.get_collection instead.

    WARNING:tensorflow:From f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\core\models\tf_model.py:131: The name tf.GraphKeys is deprecated. Please use tf.compat.v1.GraphKeys instead.

    WARNING:tensorflow:From f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\core\models\tf_model.py:94: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.

    WARNING:tensorflow:From f:\miniconda3\envs\ute_query_params_service\lib\site-packages\tensorflow_core\python\training\moving_averages.py:433: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version. Instructions for updating: Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts. WARNING:tensorflow:From f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\models\bert\bert_sequence_tagger.py:671: The name tf.assign is deprecated. Please use tf.compat.v1.assign instead.

    WARNING:tensorflow:From f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\models\bert\bert_sequence_tagger.py:244: The name tf.global_variables_initializer is deprecated. Please use tf.compat.v1.global_variables_initializer instead.

    WARNING:tensorflow:From f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\models\bert\bert_sequence_tagger.py:249: checkpoint_exists (from tensorflow.python.training.checkpoint_management) is deprecated and will be removed in a future version. Instructions for updating: Use standard file APIs to check for files with this prefix. 2020-11-30 21:40:57.982 INFO in 'deeppavlov.core.models.tf_model'['tf_model'] at line 51: [loading model from C:\Users\User.deeppavlov\models\ner_ontonotes_bert\model] WARNING:tensorflow:From f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\core\models\tf_model.py:54: The name tf.train.Saver is deprecated. Please use tf.compat.v1.train.Saver instead.

    x::London is in England. Traceback (most recent call last): File "f:\miniconda3\envs\ute_query_params_service\lib\runpy.py", line 193, in _run_module_as_main "main", mod_spec) File "f:\miniconda3\envs\ute_query_params_service\lib\runpy.py", line 85, in run_code exec(code, run_globals) File "f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov_main.py", line 4, in main() File "f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\deep.py", line 89, in main interact_model(pipeline_config_path) File "f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\core\commands\infer.py", line 89, in interact_model pred = model(*args) File "f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\core\common\chainer.py", line 207, in call return self._compute(*args, param_names=self.in_x, pipe=self.pipe, targets=self.out_params) File "f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\core\common\chainer.py", line 230, in _compute res = component.call(*x) File "f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\core\data\simple_vocab.py", line 92, in call looked_up_batch = [self(sample, is_top=False) for sample in batch] File "f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\core\data\simple_vocab.py", line 92, in looked_up_batch = [self(sample, is_top=False) for sample in batch] File "f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\core\data\simple_vocab.py", line 92, in call looked_up_batch = [self(sample, is_top=False) for sample in batch] File "f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\core\data\simple_vocab.py", line 92, in looked_up_batch = [self(sample, is_top=False) for sample in batch] File "f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\core\data\simple_vocab.py", line 92, in call looked_up_batch = [self(sample, is_top=False) for sample in batch] File "f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\core\data\simple_vocab.py", line 92, in looked_up_batch = [self(sample, is_top=False) for sample in batch] File "f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\core\data\simple_vocab.py", line 94, in call return self[batch] File "f:\miniconda3\envs\ute_query_params_service\lib\site-packages\deeppavlov\core\data\simple_vocab.py", line 161, in getitem raise NotImplementedError("not implemented for type {}".format(type(key))) NotImplementedError: not implemented for type <class 'numpy.float32'>

    I would like to get the probablities of predicted entities. Is return_probas is the way to go? Please help. Thanks in advance.

    • Ravishankar
    opened by ravishpankar 20
  • Data set creation routine for gobot DSTC 2 format

    Data set creation routine for gobot DSTC 2 format

    Hi,

    I want to create data set creation routine for gobot DSTC 2 format. I know that that there is an on going refactoring of the codebase for the Goal-oriented bot (gobot).

    Also, there is a new DSTC 8 challenge and Alexa Prize socialbot which is to be open sourced.

    So I want to ask if this feature would be needed or is it duplication of work?

    Ideally, I want to pull the routine to the deeppavlov repo, so I need some guidance/advice before jumping into the implementation.

    Things I want to clarify:

    1. Is this routine needed to be developed? Or is it already underway and it would be duplication of work?
    2. What format would be best (DSTC 2 json, DSTC 8, etc)?
    3. I want to create CLI with python, is it good?

    Anything else you think might be appropriate.

    feature request 
    opened by Eugen2525 17
  • NER fine-tuninng using pretrained using ner_ontonotes_bert_mult

    NER fine-tuninng using pretrained using ner_ontonotes_bert_mult

    I am trying to use Bert for NER recognition of standard and some custom entities. For instance, I have the following entities: 'financial_instrument', 'amount', 'percent', 'hashtag', 'exchange', 'number', 'sector', 'period', 'location', 'media_type', 'analyst', 'ticker', 'person', 'price_movement', 'rating_agency', 'product', 'amount_price_target', 'financial_topic', 'publication', 'company', 'event' and some of them I can map to the existing ones in BIO format, such as: EVENT, PERCENT, NUMBER, GPE, PERIOD, NORG, etc. However, some of my entities are new and cannot be mapped. I was wondering if I can use the pretrained ner_ontonotes_bert_mult and just add my specific entities to fine-tune the model? Is this possible and could you provide to me sample code?

    Tnx

    opened by igormis 17
  • deeppavlov.core.common.errors.ConfigError: 'Given fasttext model does NOT match fasttext model used previously to train loaded model'

    deeppavlov.core.common.errors.ConfigError: 'Given fasttext model does NOT match fasttext model used previously to train loaded model'

    I goy the following error

    Traceback (most recent call last): File "deep.py", line 63, in main() File "deep.py", line 55, in main interact_model_by_telegram(pipeline_config_path, token) File "/home/mdixie/.conda/envs/deeppavlov/lib/python3.6/site-packages/deeppavlov-0.0.1-py3.6.egg/telegram_utils/telegram_ui.py", line 57, in interact_model_by_telegram model = build_model_from_config(config) File "/home/mdixie/.conda/envs/deeppavlov/lib/python3.6/site-packages/deeppavlov-0.0.1-py3.6.egg/deeppavlov/core/commands/infer.py", line 34, in build_model_from_config model = from_params(REGISTRY[model_name], model_config, vocabs=vocabs, mode=mode) File "/home/mdixie/.conda/envs/deeppavlov/lib/python3.6/site-packages/deeppavlov-0.0.1-py3.6.egg/deeppavlov/core/common/params.py", line 49, in from_params mode=kwargs['mode']) File "/home/mdixie/.conda/envs/deeppavlov/lib/python3.6/site-packages/deeppavlov-0.0.1-py3.6.egg/deeppavlov/core/common/params.py", line 52, in from_params model = cls(**dict(config_params, **kwargs)) File "/home/mdixie/.conda/envs/deeppavlov/lib/python3.6/site-packages/deeppavlov-0.0.1-py3.6.egg/deeppavlov/core/models/tf_backend.py", line 47, in call obj.init(*args, **kwargs) File "/home/mdixie/.conda/envs/deeppavlov/lib/python3.6/site-packages/deeppavlov-0.0.1-py3.6.egg/deeppavlov/core/models/tf_backend.py", line 28, in _wrapped return func(*args, **kwargs) File "/home/mdixie/.conda/envs/deeppavlov/lib/python3.6/site-packages/deeppavlov-0.0.1-py3.6.egg/deeppavlov/models/classifiers/intents/intent_model.py", line 138, in init "Given fasttext model does NOT match fasttext model used previously to train loaded model") deeppavlov.core.common.errors.ConfigError: 'Given fasttext model does NOT match fasttext model used previously to train loaded model'

    opened by dixiematt8 16
  • Bert for classification

    Bert for classification

    Здравствуйте! Я новичок в deep learning, хотела бы претренированную модель руберт использовать для своих данных. Задача обычная классификация русских текстов - 5 классов. Работаю на гугл колаб. Есть ли у вас туториалы пошагово как применять bert от deeppavlov для собаственных данных? как менять конфиг файл? Для примера взяла rusentiment_bert.json, но не могу разобраться как привести свои данные в тот формат, который требуется для MODELS_PATH. Спасибо!

    opened by Aygera 15
  • building go-bot in russian

    building go-bot in russian

    Hi! I want to build a go-bot using DeepPavlov in russian. The task of gobot is to output phone number of requested employee by his name, surname, fathers name. I plan to use tutorial03 as a reference. And the main idea is using instead of DSTC2 data set a new one, which i gonna generate in DSTC2 format. Has the described aproach a right to exist?

    help wanted 
    opened by vitalyuf 15
  • Upgrading Tensorflow to 1.15.4 in tf.txt

    Upgrading Tensorflow to 1.15.4 in tf.txt

    What problem are we trying to solve?:

    There are many security risks around TensorFlow version 1.15.2. These issues have been fixed in version 1.15.4 and newer versions. Newer versions have also been optimized better than 1.15.2.
    

    How can we solve it?:

    Upgrading the TensorFlow to 1.15.4 in the deeppavlov>>requirements>>tf.txt from tensorflow==1.15.2 to tensorflow==1.15.4.
    

    Are there other issues that block this solution?:

    Missing out on the optimization and security enhancements.
    

    Any important aspect to consider?:

    Making sure that upgrading the TensorFlow to 1.15.4 causes no issue in syntaxes and yields the same results as 1.15.2.
    
    enhancement 
    opened by Rajmehta123 12
  • Library does't see GPU

    Library does't see GPU

    Hi everyone, thanks for your library! I use several BERT models, but I can't train them using GPU. I describe all process:

    1. I install Deeppavlov package into docker container
    2. I install tensorflow-gpu: pip install tensorflow-gpu==1.14.0
    3. I install model’s package requirements and download model
    4. I move docker container to another machine with acсess to GPU. This machine has CUDA and cudnn. But when I train model, it uses CPU. I try to check access to GPU using this command: tf.test_is_gpu_avalaible. It returns me False( May be there is a mistake in this sequence of actions?
    opened by ostreech1997 12
  • feat: Imdb sentiment dataset reader

    feat: Imdb sentiment dataset reader

    This PR implements a dataset reader for the IMDb sentiment classification dataset. It also includes a json configuration for BERT (en, cased) which is mostly the same as the configuration for rusentiment except for the max seq length and batch size (which I set to values such that I don't get out-of-memory on my hardware).

    This PR also includes a fix for the sets_accuracy metric which should now correctly work for string labels (i.e. wrap them into sets instead converting them to sets). Also I added reporting of cached files in download_decompress.

    opened by sgrechanik-h 12
  • ODQA inference speed very very slow

    ODQA inference speed very very slow

    Running the default configuration and model on a EC2 p2.xlarge instance (60~GB Ram and Nvidia K80 GPU) and inference for simple questions take 40 seconds to 5 minutes.

    Sometimes, no result even after 10 minutes.

    MobaXterm_2019-05-27_16-36-13
    opened by shubhank008 12
  • add fusion in decoder

    add fusion in decoder

    Файл c кодом модели полностью перекопирован из репозитория FiD, мне показалось что ради одного файла добавлять целый репозиторий не стоит, но мне не очевдно насколько это правильное решение

    opened by LogicZMaksimka 0
  • 👩‍💻📞DeepPavlov Community Call #18

    👩‍💻📞DeepPavlov Community Call #18

    Привет, друзья!

    Мы рады вернуться в этом месяце с DeepPavlov Community Call на русском языке. На предстоящем вебинаре к нам придет приглашенный гость Борис Галицкий, ассоциированный сотрудник лаборатории Интеллектуальных систем и структурного анализа НИУ ВШЭ, основатель нескольких стартапов в области ИИ, профессор ANECA, а также бывший сотрудник Oracle, представит доклад на тему “Дискурсивный анализ текста для организации диалога”.

    Сделать диалог с чат-ботом логичным и интересным — важнейшая задача области Conversational AI. Для этого применяются самые разные подходы, и один из них — дискурсивный анализ текста. Его идея состоит в том, чтобы чат-бот помог пользователю сфокусироваться лишь на каком-либо предложении из всего текста. В дискурсивном дереве текст разбивается на части, связанные логическими отношениями, и чат-бот направляет по ним пользователя, развивая диалог. Например, это могут быть временные (temporal) отношения, когда пользователя наверняка заинтересует, что будет после описанного события или что было до него. На нашем вебинаре Борис Галицкий подробно расскажет о способе управления ходом диалога в чат-боте на основе дискурсивного анализа текста.

    DeepPavlov Community Call #11, Русская версия (27 июля, 2022) Мы проведем следующий звонок 27 июля 2022 в 19.00 по Московскому времени (19 MSK). Добавьте напоминание в календарь: http://bit.ly/MonthlyDPCommunityCall2021Ru

    Повестка DeepPavlov Community Call #18, Русская версия:

    7:00pm–7:10pm | Приветствие 7:10 –7:45pm | Борис Галицкий: Дискурсивный анализ текста для организации диалога 7:45pm–8:00pm | Вопросы и ответы с Борисом Галицким и командой инженеров DeepPavlov

    В случае, если вы пропустили Community Calls ранее, вы всегда их можете найти в плейлисте.

    Мы приглашаем вас присоединиться к нам, чтобы сообщить, что вы думаете о последних изменениях, поделиться своими ожиданиями от предстоящей версии библиотеки и рассказать, как DeepPavlov помогает вам в ваших проектах!

    Оставьте отзыв о библиотеке DeepPavlov

    Мы хотим услышать вас. Вы можете заполнить форму ниже, чтобы сообщить нам, как вы используете DeepPavlov Library, что вы хотите, чтобы мы добавили или улучшили! http://bit.ly/DPLibrary2021Survey

    Заинтересовались? Не упускайте шанс и присоединяйтесь к нам! Этот Call открыт для всех энтузиастов в области Conversational AI.

    discussion 
    opened by PolinaMrdv 0
Releases(1.0.1)
Owner
Neural Networks and Deep Learning lab, MIPT
Neural Networks and Deep Learning lab, MIPT
Trains an OpenNMT PyTorch model and SentencePiece tokenizer.

Trains an OpenNMT PyTorch model and SentencePiece tokenizer. Designed for use with Argos Translate and LibreTranslate.

Argos Open Tech 61 Dec 13, 2022
This repository serves as a place to document a toy attempt on how to create a generative text model in Catalan, based on GPT-2

GPT-2 Catalan playground and scripts to train a GPT-2 model either from scrath or from another pretrained model.

Laura 1 Jan 28, 2022
YACLC - Yet Another Chinese Learner Corpus

汉语学习者文本多维标注数据集YACLC V1.0 中文 | English 汉语学习者文本多维标注数据集(Yet Another Chinese Learner

BLCU-ICALL 47 Dec 15, 2022
An easy-to-use framework for BERT models, with trainers, various NLP tasks and detailed annonations

FantasyBert English | 中文 Introduction An easy-to-use framework for BERT models, with trainers, various NLP tasks and detailed annonations. You can imp

Fan 137 Oct 26, 2022
SAINT PyTorch implementation

SAINT-pytorch A Simple pyTorch implementation of "Towards an Appropriate Query, Key, and Value Computation for Knowledge Tracing" based on https://arx

Arshad Shaikh 63 Dec 25, 2022
BERTAC (BERT-style transformer-based language model with Adversarially pretrained Convolutional neural network)

BERTAC (BERT-style transformer-based language model with Adversarially pretrained Convolutional neural network) BERTAC is a framework that combines a

6 Jan 24, 2022
A fast Text-to-Speech (TTS) model. Work well for English, Mandarin/Chinese, Japanese, Korean, Russian and Tibetan (so far). 快速语音合成模型,适用于英语、普通话/中文、日语、韩语、俄语和藏语(当前已测试)。

简体中文 | English 并行语音合成 [TOC] 新进展 2021/04/20 合并 wavegan 分支到 main 主分支,删除 wavegan 分支! 2021/04/13 创建 encoder 分支用于开发语音风格迁移模块! 2021/04/13 softdtw 分支 支持使用 Sof

Atomicoo 161 Dec 19, 2022
Multilingual word vectors in 78 languages

Aligning the fastText vectors of 78 languages Facebook recently open-sourced word vectors in 89 languages. However these vectors are monolingual; mean

Babylon Health 1.2k Dec 17, 2022
Smart discord chatbot integrated with Dialogflow to manage different classrooms and assist in teaching!

smart-school-chatbot Smart discord chatbot integrated with Dialogflow to interact with students naturally and manage different classes in a school. De

Tom Huynh 5 Oct 24, 2022
Code for our ACL 2021 (Findings) Paper - Fingerprinting Fine-tuned Language Models in the wild .

🌳 Fingerprinting Fine-tuned Language Models in the wild This is the code and dataset for our ACL 2021 (Findings) Paper - Fingerprinting Fine-tuned La

LCS2-IIITDelhi 5 Sep 13, 2022
Guide: Finetune GPT2-XL (1.5 Billion Parameters) and GPT-NEO (2.7 B) on a single 16 GB VRAM V100 Google Cloud instance with Huggingface Transformers using DeepSpeed

Guide: Finetune GPT2-XL (1.5 Billion Parameters) and GPT-NEO (2.7 Billion Parameters) on a single 16 GB VRAM V100 Google Cloud instance with Huggingfa

289 Jan 06, 2023
Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation

Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision Training Efficiency We show the training efficiency of our DSLP model b

Chenyang Huang 37 Jan 04, 2023
A spaCy wrapper of OpenTapioca for named entity linking on Wikidata

spaCyOpenTapioca A spaCy wrapper of OpenTapioca for named entity linking on Wikidata. Table of contents Installation How to use Local OpenTapioca Vizu

Universitätsbibliothek Mannheim 80 Jan 03, 2023
TweebankNLP - Pre-trained Tweet NLP Pipeline (NER, tokenization, lemmatization, POS tagging, dependency parsing) + Models + Tweebank-NER

TweebankNLP This repo contains the new Tweebank-NER dataset and off-the-shelf Twitter-Stanza pipeline for state-of-the-art Tweet NLP, as described in

Laboratory for Social Machines 84 Dec 20, 2022
Journey is a NLP-Powered Developer assistant

Journey Journey is a NLP-Powered Developer assistant Using on the powerful Natural Language Processing library Mindmeld, this projects aims to assist

Christian Eilers 21 Dec 11, 2022
Use Google's BERT for named entity recognition (CoNLL-2003 as the dataset).

For better performance, you can try NLPGNN, see NLPGNN for more details. BERT-NER Version 2 Use Google's BERT for named entity recognition (CoNLL-2003

Kaiyinzhou 1.2k Dec 26, 2022
An easy-to-use Python module that helps you to extract the BERT embeddings for a large text dataset (Bengali/English) efficiently.

An easy-to-use Python module that helps you to extract the BERT embeddings for a large text dataset (Bengali/English) efficiently.

Khalid Saifullah 37 Sep 05, 2022
[Preprint] Escaping the Big Data Paradigm with Compact Transformers, 2021

Compact Transformers Preprint Link: Escaping the Big Data Paradigm with Compact Transformers By Ali Hassani[1]*, Steven Walton[1]*, Nikhil Shah[1], Ab

SHI Lab 367 Dec 31, 2022
Neural network models for joint POS tagging and dependency parsing (CoNLL 2017-2018)

Neural Network Models for Joint POS Tagging and Dependency Parsing Implementations of joint models for POS tagging and dependency parsing, as describe

Dat Quoc Nguyen 152 Sep 02, 2022
📜 GPT-2 Rhyming Limerick and Haiku models using data augmentation

Well-formed Limericks and Haikus with GPT2 📜 GPT-2 Rhyming Limerick and Haiku models using data augmentation In collaboration with Matthew Korahais &

Bardia Shahrestani 2 May 26, 2022