This repository has datasets containing information of Uber pickups in NYC from April 2014 to September 2014 and January to June 2015. data Analysis , virtualization and some insights are gathered here

Overview

uber-pickups-analysis

Data Source: https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city

Information about data set

The dataset contains, roughly, TWO groups of files: ● Uber trip data from 2014 (April - September), separated by month, with detailed location information. ● Uber trip data from 2015 (January - June), with less fine-grained location information.

Uber trip data from 2014 There are six files of raw data on Uber pickups in New York City from April to September 2014. The files are separated by month and each has the following columns: ● Date/Time : The date and time of the Uber pickup ● Lat : The latitude of the Uber pickup ● Lon : The longitude of the Uber pickup ● Base : The TLC base company code affiliated with the Uber pickup. These files are named:

● uber-raw-data-apr14.csv ● uber-raw-data-aug14.csv ● uber-raw-data-jul14.csv ● uber-raw-data-jun14.csv ● uber-raw-data-may14.csv ● uber-raw-data-sep14.csv

Uber trip data from 2015

Also included is the file uber-raw-data-janjune-15.csv This file has the following columns: ● Dispatching_base_num : The TLC base company code of the base that dispatched the Uber. ● Pickup_date : The date and time of the Uber pickup ● Affiliated_base_num : The TLC base company code affiliated with the Uber pickup. ● locationID : The pickup location ID affiliated with the Uber pickup These files are named:

  • uber-raw-data-janjune-15.csv

motive of Project

To analyze the data of the customer rides and visualize the data to find insights that can help improve business. Data analysis and visualization is an important part of data science. They are used to gather insights from the data and with visualization you can get quick information from the data.

How to Run the Project

In order to run the project just download the data from above mentioned source then run any file.

Prerequisites

You need to have installed following softwares and libraries in your machine before running this project.

Python 3 Anaconda: It will install ipython notebook and most of the libraries which are needed like sklearn, pandas, seaborn, matplotlib, numpy, scipy.

Installing

Python 3: https://www.python.org/downloads/ Anaconda: https://www.anaconda.com/download/

Authors

DEVA DEEKSHITH and kilari jaswanth(https://github.com/Kilarijaswanth)- combined work

Owner
B DEVA DEEKSHITH
B DEVA DEEKSHITH
A Multipurpose Library for Synthetic Time Series Generation in Python

TimeSynth Multipurpose Library for Synthetic Time Series Please cite as: J. R. Maat, A. Malali, and P. Protopapas, “TimeSynth: A Multipurpose Library

278 Dec 26, 2022
Lightning ⚡️ fast forecasting with statistical and econometric models.

Nixtla Statistical ⚡️ Forecast Lightning fast forecasting with statistical and econometric models StatsForecast offers a collection of widely used uni

Nixtla 2.1k Dec 29, 2022
slim-python is a package to learn customized scoring systems for decision-making problems.

slim-python is a package to learn customized scoring systems for decision-making problems. These are simple decision aids that let users make yes-no p

Berk Ustun 37 Nov 02, 2022
Python package for machine learning for healthcare using a OMOP common data model

This library was developed in order to facilitate rapid prototyping in Python of predictive machine-learning models using longitudinal medical data from an OMOP CDM-standard database.

Sontag Lab 75 Jan 03, 2023
Simplify stop motion animation with machine learning.

Simplify stop motion animation with machine learning.

Nick Bild 25 Sep 15, 2022
Sequence learning toolkit for Python

seqlearn seqlearn is a sequence classification toolkit for Python. It is designed to extend scikit-learn and offer as similar as possible an API. Comp

Lars 653 Dec 27, 2022
Greykite: A flexible, intuitive and fast forecasting library

The Greykite library provides flexible, intuitive and fast forecasts through its flagship algorithm, Silverkite.

LinkedIn 1.7k Jan 04, 2023
Open MLOps - A Production-focused Open-Source Machine Learning Framework

Open MLOps - A Production-focused Open-Source Machine Learning Framework Open MLOps is a set of open-source tools carefully chosen to ease user experi

Data Revenue 590 Dec 28, 2022
Nixtla is an open-source time series forecasting library.

Nixtla Nixtla is an open-source time series forecasting library. We are helping data scientists and developers to have access to open source state-of-

Nixtla 401 Jan 08, 2023
Simple data balancing baselines for worst-group-accuracy benchmarks.

BalancingGroups Code to replicate the experimental results from Simple data balancing baselines achieve competitive worst-group-accuracy. Replicating

Facebook Research 29 Dec 02, 2022
Distributed Computing for AI Made Simple

Project Home Blog Documents Paper Media Coverage Join Fiber users email list Uber Open Source 997 Dec 30, 2022

pywFM is a Python wrapper for Steffen Rendle's factorization machines library libFM

pywFM pywFM is a Python wrapper for Steffen Rendle's libFM. libFM is a Factorization Machine library: Factorization machines (FM) are a generic approa

João Ferreira Loff 251 Sep 23, 2022
Automatic extraction of relevant features from time series:

tsfresh This repository contains the TSFRESH python package. The abbreviation stands for "Time Series Feature extraction based on scalable hypothesis

Blue Yonder GmbH 7k Jan 06, 2023
mlpack: a scalable C++ machine learning library --

a fast, flexible machine learning library Home | Documentation | Doxygen | Community | Help | IRC Chat Download: current stable version (3.4.2) mlpack

mlpack 4.2k Jan 01, 2023
Breast-Cancer-Classification - Using SKLearn breast cancer dataset which contains 569 examples and 32 features classifying has been made with 6 different algorithms

Breast-Cancer-Classification - Using SKLearn breast cancer dataset which contains 569 examples and 32 features classifying has been made with 6 different algorithms

Mert Sezer Ardal 1 Jan 31, 2022
Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques

Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learn

Vowpal Wabbit 8.1k Dec 30, 2022
[HELP REQUESTED] Generalized Additive Models in Python

pyGAM Generalized Additive Models in Python. Documentation Official pyGAM Documentation: Read the Docs Building interpretable models with Generalized

daniel servén 747 Jan 05, 2023
Python package for stacking (machine learning technique)

vecstack Python package for stacking (stacked generalization) featuring lightweight functional API and fully compatible scikit-learn API Convenient wa

Igor Ivanov 671 Dec 25, 2022
Data Efficient Decision Making

Data Efficient Decision Making

Microsoft 197 Jan 06, 2023
GroundSeg Clustering Optimized Kdtree

ground seg and clustering based on kitti velodyne data, and a additional optimized kdtree for knn and radius nn search

2 Dec 02, 2021