An ETL framework + Monitoring UI/API (experimental project for learning purposes)

Related tags

Data Analysisfastlane
Overview

Fastlane

An ETL framework for building pipelines, and Flask based web API/UI for monitoring pipelines.

Project structure

fastlane
|- fastlane: (ETL framework)
|- fastlane_web: (web API/UI for monitoring pipelines)
   |- migrations: (database migrations)
   |- web_api: Flask backend API
   |- web_ui: TBD

Install

  1. Clone the repository
  2. pip install -e .

Example

fastlane --source=mysql --target=s3 --config=examples/mysql_to_athena_example.json

--source: The pipeline's source type (mysql, bigquery, mongodb are only implemented sources so far)

--target: The pipeline's target type (s3, influxdb, mysql, firehose are only implemented targets so far)

--transform: The pipeline's tranform type (default is the only implemented transform so far)

--config: The path to JSON configuration file for the pipeline

--logs_to_slack: Send error logs to slack

--logs_to_cloudwatch: Send logs to cloudwatch

--logs_to_file: Send logs to a file

Extending the framework

The ETL framework has 4 concepts:

Source

The base class fastlane.source.Source provides basic functionality, and defines a standard interface for extracting data from a particular source type. An instance of Source is responsible only for extracting data from source and returning as a python list of dictionaries.

Implementations of the Source base class must fulfill the following functions at minimum:

str: """Return a string describing type of source this is, for example mysql or bigquery""" @classmethod def configuration_schema(cls) -> SourceConfigSchema: """Return a marshmallow schema inherited from SourceConfigSchema base schema. This schema is used to validate the sources configuration, so all possible fields should be covered in schema returned here."""">
from fastlane.source import Source, SourceConfigSchema
import fastlane.utils as utils


class SourceImpl(Source):
    ...

    def extract(self) -> List[dict]:
        """This function should retrieve data from the source and return it as a list of dictionaries.
            The Source class is an iterator, and this function is called on each iteration. 
            The iterator stops (and source worker exits) when this function returns an empty list. 
            So when there are no more records to fetch, this function should return [].
        """

    @utils.classproperty
    def source_type(self) -> str:
        """Return a string describing type of source this is, for example mysql or bigquery"""

    @classmethod
    def configuration_schema(cls) -> SourceConfigSchema:
        """Return a marshmallow schema inherited from SourceConfigSchema base schema.
            This schema is used to validate the sources configuration, so all possible fields should be covered in
            schema returned here."""

Example implementation of Source interface is in fastlane.sources.impl.source_mysql

Implementation Coverage

  • MySQL
  • BigQuery
  • MongoDB

Transform

The base class fastlane.transform.Transform provides basic functionality, and defines a standard interface for transforming data to be ready for target. An instance of Transform is responsible only for transforming data from source into a format compatible with target.

Implementations of the Transform base class must fulfill the following functions at minimum:

str: """Return a string describing type of transform this is.""" @classmethod def configuration_schema(cls) -> TransformConfigSchema: """Return a marshmallow schema inherited from TransformConfigSchema base schema. This schema is used to validate the transforms configuration, so all possible fields should be covered in schema returned here."""">
from fastlane.transform import Transform, TransformConfigSchema
import fastlane.utils as utils


class TransformImpl(Transform):
    ...

    def transform(self, df: pd.DataFrame) -> pd.DataFrame:
        """This function should run any transformation on the dataframe and return the transformed dataframe.
            Ideally the same dataframe should by transformed on in place, but if a new dataframe needs to be created, 
            Make sure to remove the old dataframes from memory.
            This function is called by the transform worker every time a new batch of source data has been received.
        """

    @utils.classproperty
    def transform_type(self) -> str:
        """Return a string describing type of transform this is."""

    @classmethod
    def configuration_schema(cls) -> TransformConfigSchema:
        """Return a marshmallow schema inherited from TransformConfigSchema base schema.
            This schema is used to validate the transforms configuration, so all possible fields should be covered in
            schema returned here."""

Example implementation of Transform interface is in fastlane.transform.impl.transform_default

Target

The base class fastlane.target.Target provides basic functionality, and defines a standard interface for loading data into a destination. An instance of Target is responsible only for storing data which has been transformed into a destination.

Implementations of the Target base class must fulfill the following functions at minimum:

str: """Return a string describing type of target this is.""" @classmethod def target_id(cls, configuration: dict) -> str: """Return a unique identifier from this specific targets configuration. The id should be unique across the whole target destination. For example the target_id for mysql target is built from table and database"""">
from fastlane.target import Target, TargetConfigSchema
import fastlane.utils as utils


class TargetImpl(Target):
    ...

    def load(self, df: pd.DataFrame):
        """This function is called by the target worker every time a new batch of transformed data has been received.
            This function should store the dataframe in whatever destination it implements.
        """

    def get_offset(self):
        """Get the largest key which has been stored in the target. Used from incrementally loaded tables."""

    @utils.classproperty
    def target_type(self) -> str:
        """Return a string describing type of target this is."""

    @classmethod
    def target_id(cls, configuration: dict) -> str:
        """Return a unique identifier from this specific targets configuration. 
            The id should be unique across the whole target destination. 
            For example the target_id for mysql target is built from table and database"""

Example implementation of Target interface is in fastlane.target.impl.target_athena

Implementation Coverage

  • S3
  • InfluxDB
  • MySQL
  • Firehose

Pipeline

The fastlane.pipeline.Pipeline class is what drives the ETL process. It manages the source, transform and target processes, and runs monitoring processes which give insight into the performance/state of the running pipeline.

The Pipeline class works by spawning a number of worker threads for each stage of the ETL process (source, transform, target). Each stage passes work to the next via Queues:

        _________________        Queue       ____________________         Queue        ________________    load
extract | source_worker | -->  [|.|.|.|] -->| transform_worker_1 | -->  [|.|.|.|] --> | target_worker_1 | ------>
------> |_______________|                    --------------------                      ----------------    load
                                         -->| transform_worker_2 |                --> | target_worker_2 | ------>
                                             --------------------                      ----------------    load
                                         -->| transform_worker_3 |                --> | target_worker_3 | ------>
                                             --------------------                      ----------------    load
                                                                                  --> | target_worker_4 | ------>
                                                                                       ----------------

Throughout the ETL process, few small monitoring processes are collecting metrics at periodic intervals such as memory usage, records loaded per second, total records loaded, queue sizes. See fastlane.monitoring.pipeline_monitor for more details on how thats done.

Pipelines Web API

This project includes a Pipeline web API built w Flask which is used as a backend for collecting and storing the metrics from running Pipelines, as well as to serve the Pipeline monitoring web UI.

Resources

CRUD on pipelines

Methods

/api/pipeline

POST
GET
DELETE

/api/pipelines

list pipelines

Methods
GET

/api/pipeline/run

invocation of a particular pipeline

Methods
POST
PUT
GET
DELETE

/api/pipeline/run/latest

latest invocation of a particular pipeline.

Methods
GET

/api/pipeline/run/rps

records per second metrics for a particuar pipeline run.

Methods
GET
POST

/api/pipeline/run/memory_usage

memory usage metrics for a particular pipeline run.

Methods
GET
POST

/api/pipeline/run/logs

logs (from cloudwatch) for a particular pipeline run.

Methods
GET
POST

Pipeline Web UI

Will pvoide a user interface to moniter currently running pipelines, as well as debug and analyze previously invoked pipelines.

Owner
Dan Katz
Seasoned software engineer working in prototyping, architecting, developing and testing full stack applications
Dan Katz
A data parser for the internal syncing data format used by Fog of World.

A data parser for the internal syncing data format used by Fog of World. The parser is not designed to be a well-coded library with good performance, it is more like a demo for showing the data struc

Zed(Zijun) Chen 40 Dec 12, 2022
DenseClus is a Python module for clustering mixed type data using UMAP and HDBSCAN

DenseClus is a Python module for clustering mixed type data using UMAP and HDBSCAN. Allowing for both categorical and numerical data, DenseClus makes it possible to incorporate all features in cluste

Amazon Web Services - Labs 53 Dec 08, 2022
A Numba-based two-point correlation function calculator using a grid decomposition

A Numba-based two-point correlation function (2PCF) calculator using a grid decomposition. Like Corrfunc, but written in Numba, with simplicity and hackability in mind.

Lehman Garrison 3 Aug 24, 2022
We're Team Arson and we're using the power of predictive modeling to combat wildfires.

We're Team Arson and we're using the power of predictive modeling to combat wildfires. Arson Map Inspiration There’s been a lot of wildfires in Califo

Jerry Lee 3 Oct 17, 2021
vartests is a Python library to perform some statistic tests to evaluate Value at Risk (VaR) Models

gg I wasn't satisfied with any of the other available Gemini clients, so I wrote my own. Requires Python 3.9 (maybe older, I haven't checked) and opti

RAFAEL RODRIGUES 5 Jan 03, 2023
PandaPy has the speed of NumPy and the usability of Pandas 10x to 50x faster (by @firmai)

PandaPy "I came across PandaPy last week and have already used it in my current project. It is a fascinating Python library with a lot of potential to

Derek Snow 527 Jan 02, 2023
General Assembly's 2015 Data Science course in Washington, DC

DAT8 Course Repository Course materials for General Assembly's Data Science course in Washington, DC (8/18/15 - 10/29/15). Instructor: Kevin Markham (

Kevin Markham 1.6k Jan 07, 2023
TE-dependent analysis (tedana) is a Python library for denoising multi-echo functional magnetic resonance imaging (fMRI) data

tedana: TE Dependent ANAlysis TE-dependent analysis (tedana) is a Python library for denoising multi-echo functional magnetic resonance imaging (fMRI)

136 Dec 22, 2022
NumPy and Pandas interface to Big Data

Blaze translates a subset of modified NumPy and Pandas-like syntax to databases and other computing systems. Blaze allows Python users a familiar inte

Blaze 3.1k Jan 05, 2023
PyPSA: Python for Power System Analysis

1 Python for Power System Analysis Contents 1 Python for Power System Analysis 1.1 About 1.2 Documentation 1.3 Functionality 1.4 Example scripts as Ju

758 Dec 30, 2022
Random dataframe and database table generator

Random database/dataframe generator Authored and maintained by Dr. Tirthajyoti Sarkar, Fremont, USA Introduction Often, beginners in SQL or data scien

Tirthajyoti Sarkar 249 Jan 08, 2023
Generates a simple report about the current Covid-19 cases and deaths in Malaysia

Generates a simple report about the current Covid-19 cases and deaths in Malaysia. Results are delay one day, data provided by the Ministry of Health Malaysia Covid-19 public data.

Yap Khai Chuen 7 Dec 15, 2022
Pyspark project that able to do joins on the spark data frames.

SPARK JOINS This project is to perform inner, all outer joins and semi joins. create_df.py: load_data.py : helps to put data into Spark data frames. d

Joshua 1 Dec 14, 2021
ASOUL直播间弹幕抓取&&数据分析

ASOUL直播间弹幕抓取&&数据分析(更新中) 这些文件用于爬取ASOUL直播间的弹幕(其他直播间也可以)和其他信息,以及简单的数据分析生成。

159 Dec 10, 2022
Business Intelligence (BI) in Python, OLAP

Open Mining Business Intelligence (BI) Application Server written in Python Requirements Python 2.7 (Backend) Lua 5.2 or LuaJIT 5.1 (OML backend) Mong

Open Mining 1.2k Dec 27, 2022
Analysiscsv.py for extracting analysis and exporting as CSV

wcc_analysis Lichess page documentation: https://lichess.org/page/world-championships Each WCC has a study, studies are fetched using: https://lichess

32 Apr 25, 2022
PipeChain is a utility library for creating functional pipelines.

PipeChain Motivation PipeChain is a utility library for creating functional pipelines. Let's start with a motivating example. We have a list of Austra

Michael Milton 2 Aug 07, 2022
A script to "SHUA" H1-2 map of Mercenaries mode of Hearthstone

lushi_script Introduction This script is to "SHUA" H1-2 map of Mercenaries mode of Hearthstone Installation Make sure you installed python=3.6. To in

210 Jan 02, 2023
A real data analysis and modeling project - restaurant inspections

A real data analysis and modeling project - restaurant inspections Jafar Pourbemany 9/27/2021 This project represents data analysis and modeling of re

Jafar Pourbemany 2 Aug 21, 2022
Predictive Modeling & Analytics on Home Equity Line of Credit

Predictive Modeling & Analytics on Home Equity Line of Credit Data (Python) HMEQ Data Set In this assignment we will use Python to examine a data set

Dhaval Patel 1 Jan 09, 2022