This repository provides the official code for GeNER (an automated dataset Generation framework for NER).

Overview

GeNER

This repository provides the official code for GeNER (an automated dataset Generation framework for NER).

Overview of GeNER

GeNER allows you to build NER models for specific entity types of interest without human-labeled data and and rich dictionaries. The core idea is to ask simple natural language questions to an open-domain question answering (QA) system and then retrieve phrases and sentences, as shown in the query formulation and retrieval stages in the figure below. Please see our paper (Simple Questions Generate Named Entity Recognition Datasets) for details.

Requirements

Please follow the instructions below to set up your environment and install GeNER.

# Create a conda virtual environment
conda create -n GeNER python=3.8
conda activate GeNER

# Install PyTorch
conda install pytorch=1.9.0 cudatoolkit=11.1 -c pytorch -c conda-forge

# Install GeNER
git clone https://github.com/dmis-lab/GeNER.git
cd GeNER
pip install -r requirements.txt

NER Benchmarks

Run unzip data/benchmarks.zip -d ./data to unpack (pre-processed) NER benchmarks.

QA Model and Phrase Index: DensePhrases

We use DensePhrases and a Wikipedia index precomputed by DensePhrases in order to automatically generate NER datasets. After installing DensePhrases v1.0.0, please download the DensePhrases model (densephrases-multi-query-multi) and the phrase index (densephrases-multi_wiki-20181220) in the official DensePhrases repository.

AutoPhrase (Optional)

Using AutoPhrase in the dictionary matching stage usually improves final NER performance. If you are using AutoPhrase to apply Rule 10 (i.e., refining entity boundaries), please check the system requirements in the AutoPhrase repository. If you are not using AutoPhrase, set refine_boundary to false in a configuration file in the configs directory.

Computational Resource

Please see the resource requirement of DensePhrases and self-training, and check available resources of your machine.

  • 100GB RAM and a single 11G GPU to run DensePhrases
  • Single 9G GPU to perform self-training (based on batch size 16)

Reproducing Experiments

GeNER is implemented as a pipeline of DensePhrases, dictionary matching, and AutoPhrase. The entire pipeline is controlled by configuration files located in the configs directory. Please see configs/README.md for details.

We have already set up configuration files and optimal hyperparameters for all benchmarks and experiments so that you can easily reproduce similar or better performance to those presented in our paper. Just follow the instructions below for reproduction!

Example: low-resource NER (CoNLL-2003)

This example is intended to reproduce the experiment in the low-resource NER setting on the CoNLL-2003 benchmark. If you want to reproduce other experiments, you will need to change some arguments including --gener_config_path according to the target benchmark.

Retrieval

Running retrieve.py will create *.json and *.raw files in the data/retrieved/conll-2003 directory.

export CUDA_VISIBLE_DEVICES=0
export DENSEPHRASES_PATH={enter your densephrases path here}
export CONFIG_PATH=./configs/conll_config.json

python retrieve.py \
      --run_mode eval \
      --model_type bert \
      --cuda \
      --aggregate \
      --truecase \
      --return_sent \
      --pretrained_name_or_path SpanBERT/spanbert-base-cased \
      --dump_dir $DENSEPHRASES_PATH/outputs/densephrases-multi_wiki-20181220/dump/ \
      --index_name start/1048576_flat_OPQ96  \
      --load_dir $DENSEPHRASES_PATH/outputs/densephrases-multi-query-multi/  \
      --gener_config_path $CONFIG_PATH

Applying AutoPhrase (optional)

apply_autophrase.sh takes as input all *.raw files in the data/retrieved/conll-2003 directory and outputs *.autophrase files in the same directory.

bash autophrase/apply_autophrase.sh data/retrieved/conll-2003

Dictionary matching

Running annotate.py will create train.json and train_hf.json files in the data/annotated/conll-2003 directory. The first JSON file is used in this repository, especially in the self-training stage. The second one has the same data format as the Hugging Face Transformers library and is provided for your convenience.

python annotate.py --gener_config_path $CONFIG_PATH

Self-training

Finally, you can get the final NER model and see its performance. The model and training logs are stored in the ./outputs directory. See the Makefile file for running experiments on other benchmarks.

make conll-low

Fine-tuning GeNER

While GeNER performs well without any human-labeled data, you can further boost GeNER's performance using some training examples. The way to do this is very simple: load a trained GeNER model from the ./outputs directory and fine-tune it on training examples you have by a standard NER objective (i.e., token classification). We provide a fine-tuning script in this repository (self-training/run_ner.py) and datasets to reproduce fine-grained and few-shot NER experiments (data/fine-grained and data/few-shot directories).

export CUDA_VISIBLE_DEVICES=0

python self-training/run_ner.py \
      --data_dir data/few-shot/conll-2003/conll-2003_0 \
      --model_type bert \
      --model_name_or_path outputs/{enter GeNER model path here} \
      --output_dir outputs/{enter GeNER model path here} \
      --num_train_epochs 100 \
      --per_gpu_train_batch_size 64 \
      --per_gpu_eval_batch_size 64 \
      --learning_rate 1e-5 \
      --do_train \
      --do_eval \
      --do_test \
      --evaluate_during_training

# Note that this hyperparameter setup may not be optimal. It is recommended to search for more effective hyperparameters, especially the learning rate.

Building NER Models for Your Specific Needs

The main benefit of GeNER is that you can create NER datasets of new and different entity types you want to extract. Suppose you want to extract fighter aircraft names. The first thing you have to do is to formulate your needs as natural language questions such as "Which fighter aircraft?." At this stage, we recommend using the DensePhrases demo to manually check the feasibility of your questions. If relevant phrases are retrieved well, you can proceed to the next step.

Next, you should make a configuration file (e.g., fighter_aircraft_config.json) and set up its values. You can reflect questions you made in the configuration file as follows: "subtype": "fighter aircraft". Also, you can fine-tune some hyperparameters such as top_k and normalization rules. See configs/README.md for detailed descriptions of configuration files.

{
    "retrieved_path": "data/retrieved/{file name}",
    "annotated_path": "data/annotated/{file name}",
    "add_abbreviation": true,
    "refine_boundary" : true,
    "subquestion_configs": [
        {
            "type": "{the name of pre-defined entity type}",
            "subtype" : "fighter aircraft",
            "top_k" : 5000,
            "split_composite_mention": true,
            "remove_lowercase_phrase": true,
            "remove_the": false,
            "skip_lowercase_ngram": 1
        }
    ]
}

For subsequent steps (i.e., retrieval, dictionary matching, and self-training), refer to the CoNLL-2003 example described above.

References

Please cite our paper if you consider GeNER to be related to your work. Thanks!

@article{kim2021simple,
      title={Simple Questions Generate Named Entity Recognition Datasets}, 
      author={Hyunjae Kim and Jaehyo Yoo and Seunghyun Yoon and Jinhyuk Lee and Jaewoo Kang},
      year={2021},
      eprint={2112.08808},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

Contact

Feel free to email Hyunjae Kim ([email protected]) if you have any questions.

License

See the LICENSE file for details.

Owner
DMIS Laboratory - Korea University
Data Mining & Information Systems Laboratory @ Korea University
DMIS Laboratory - Korea University
traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation toolbox based on PyTorch.

traiNNer traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation to

202 Jan 04, 2023
I3-master-layout - Simple master and stack layout script

Simple master and stack layout script | ------ | ----- | | | | | Ma

Tobias S 18 Dec 05, 2022
A PyTorch Implementation of PGL-SUM from "Combining Global and Local Attention with Positional Encoding for Video Summarization", Proc. IEEE ISM 2021

PGL-SUM: Combining Global and Local Attention with Positional Encoding for Video Summarization PyTorch Implementation of PGL-SUM From "PGL-SUM: Combin

Evlampios Apostolidis 35 Dec 22, 2022
existing and custom freqtrade strategies supporting the new hyperstrategy format.

freqtrade-strategies Description Existing and self-developed strategies, rewritten to support the new HyperStrategy format from the freqtrade-develop

39 Aug 20, 2021
This repository contains the code for "SBEVNet: End-to-End Deep Stereo Layout Estimation" paper by Divam Gupta, Wei Pu, Trenton Tabor, Jeff Schneider

SBEVNet: End-to-End Deep Stereo Layout Estimation This repository contains the code for "SBEVNet: End-to-End Deep Stereo Layout Estimation" paper by D

Divam Gupta 19 Dec 17, 2022
Match SafeGraph POIs with Data collected through a cultural resource survey in Washington DC.

Match SafeGraph POI data with Cultural Resource Places in Washington DC Match SafeGraph POIs with Data collected through a cultural resource survey in

Changjie Chen 1 Jan 05, 2022
Contains supplementary materials for reproduce results in HMC divergence time estimation manuscript

Scalable Bayesian divergence time estimation with ratio transformations This repository contains the instructions and files to reproduce the analyses

Suchard Research Group 1 Sep 21, 2022
Lowest memory consumption and second shortest runtime in NTIRE 2022 challenge on Efficient Super-Resolution

FMEN Lowest memory consumption and second shortest runtime in NTIRE 2022 on Efficient Super-Resolution. Our paper: Fast and Memory-Efficient Network T

33 Dec 01, 2022
Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol.

Updated Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol. Introduction This balenaCloud (previously

Remko 1 Oct 17, 2021
Unofficial pytorch-lightning implement of Mip-NeRF

mipnerf_pl Unofficial pytorch-lightning implement of Mip-NeRF, Here are some results generated by this repository (pre-trained models are provided bel

Jianxin Huang 159 Dec 23, 2022
rliable is an open-source Python library for reliable evaluation, even with a handful of runs, on reinforcement learning and machine learnings benchmarks.

Open-source library for reliable evaluation on reinforcement learning and machine learning benchmarks. See NeurIPS 2021 oral for details.

Google Research 529 Jan 01, 2023
This project aims to be a handler for input creation and running of multiple RICEWQ simulations.

What is autoRICEWQ? This project aims to be a handler for input creation and running of multiple RICEWQ simulations. What is RICEWQ? From the descript

Yass Fuentes 1 Feb 01, 2022
E-RAFT: Dense Optical Flow from Event Cameras

E-RAFT: Dense Optical Flow from Event Cameras This is the code for the paper E-RAFT: Dense Optical Flow from Event Cameras by Mathias Gehrig, Mario Mi

Robotics and Perception Group 71 Dec 12, 2022
Demo for Real-time RGBD-based Extended Body Pose Estimation paper

Real-time RGBD-based Extended Body Pose Estimation This repository is a real-time demo for our paper that was published at WACV 2021 conference The ou

Renat Bashirov 118 Dec 26, 2022
Official repository for "Restormer: Efficient Transformer for High-Resolution Image Restoration". SOTA for motion deblurring, image deraining, denoising (Gaussian/real data), and defocus deblurring.

Restormer: Efficient Transformer for High-Resolution Image Restoration Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan,

Syed Waqas Zamir 906 Dec 30, 2022
Implementation of Graph Transformer in Pytorch, for potential use in replicating Alphafold2

Graph Transformer - Pytorch Implementation of Graph Transformer in Pytorch, for potential use in replicating Alphafold2. This was recently used by bot

Phil Wang 97 Dec 28, 2022
Code for the KDD 2021 paper 'Filtration Curves for Graph Representation'

Filtration Curves for Graph Representation This repository provides the code from the KDD'21 paper Filtration Curves for Graph Representation. Depende

Machine Learning and Computational Biology Lab 16 Oct 16, 2022
[SIGGRAPH Asia 2021] DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning.

DeepVecFont This is the homepage for "DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning". Yizhi Wang and Zhouhui Lian. WI

Yizhi Wang 17 Dec 22, 2022
NudeNet: Neural Nets for Nudity Classification, Detection and selective censoring

NudeNet: Neural Nets for Nudity Classification, Detection and selective censoring Uncensored version of the following image can be found at https://i.

notAI.tech 1.1k Dec 29, 2022
Hso-groupie - A pwnable challenge in Real World CTF 4th

Hso-groupie - A pwnable challenge in Real World CTF 4th

Riatre Foo 42 Dec 05, 2022