[ICCV '21] In this repository you find the code to our paper Keypoint Communities

Overview

Keypoint Communities

PWC PWC

In this repository you will find the code to our ICCV '21 paper:

Keypoint Communities
Duncan Zauss, Sven Kreiss, Alexandre Alahi, 2021.

We present a fast bottom-up method that jointly detects over 100 keypoints on humans or objects, also referred to as human/object pose estimation. We model all keypoints belonging to a human or an object -the pose- as a graph and leverage insights from community detection to quantify the independence of keypoints. We use a graph centrality measure to assign training weights to different parts of a pose. Our proposed measure quantifies how tightly a keypoint is connected to its neighborhood. Our experiments show that our method outperforms all previous methods for human pose estimation with fine-grained keypoint annotations on the face, the hands and the feet with a total of 133 keypoints. We also show that our method generalizes to car poses.

Qualitative results

example image with overlaid wholebody pose predictions

Image credit: Photo by Toby Bradbury which is licensed under CC-BY-2.0.

drawing

Webcam demo. You can try it out yourself with the following command:

python -m openpifpaf.video --checkpoint=shufflenetv2k16-wholebody --show --long-edge=320

example image with overlaid wholebody pose predictions

Image credit: Photo by Lokomotive74 which is licensed under CC-BY-4.0.
Created with:

python -m openpifpaf.predict docs/soccer.jpeg --checkpoint=shufflenetv2k30-wholebody --line-width=2 --show

example image with overlaid wholebody pose predictions

Image credit: "Learning to surf" by fotologic which is licensed under [CC-BY-2.0].
Created with:

python3 -m openpifpaf.predict docs/000000081988.jpg --checkpoint=shufflenetv2k30-wholebody --line-width=2 --show

Installation

This project is based on OpenPifPaf. Create a virtual environment with python 3.7, 3.8 or 3.9, clone this repo and then install the required packages:

git clone https://github.com/DuncanZauss/Keypoint_Communities.git
cd Keypoint_Communities
pip install -r requirements.txt

Obtain keypoint weights

To compute the keypoint weights with our method, download the preprocessed annotations of the MS COCO WholeBody dataset and/or the ApolloCar3D dataset with the following commands:

cd Keypoint_Communities/src
wget https://github.com/DuncanZauss/Keypoint_Communities/releases/download/v0.1.0/person_keypoints_train2017_wholebody_pifpaf_style.json
wget https://github.com/DuncanZauss/Keypoint_Communities/releases/download/v0.1.0/apollo_keypoints_66_train.json

To compute the average euclidean distance in the datasets for every edge run:

python Compute_edge_weights.py

To compute training weights with centrality measures as proposed in our paper run the following command:

python Compute_training_weights.py

You will find the computed weights in the respective csv file and a visualization of the computed weights in the respective docs folder.

Visualization of the weights for the WholeBody, where we take all shortest paths into account (left) and where we only take the shortest paths with a radius of three into account (right).

Visualization of the weights for the car pose, where we only take the shortest paths with a radius of three into account.

Training

For training you will need to download the MS COCO dataset and the WholeBody keypoint annotations as explained here. To train an OpenPifPaf model with our keypoint weighting scheme, you can use the following command:

python -m openpifpaf.train --dataset=wholebody --lr=0.0001 --momentum=0.95 --b-scale=10.0 --clip-grad-value=10 --epochs=350 --lr-decay 330 340 --lr-decay-epochs=10 --lr-warm-up-start-epoch=250 --batch-size=16 --weight-decay=1e-5 --wholebody-upsample=2 --wholebody-extended-scale --wholebody-orientation-invariant=0.1 --checkpoint=shufflenetv2k30 --head-consolidation=create --wholebody-val-annotations=
   
   
    
    /person_keypoints_val2017_wholebody_pifpaf_style.json --wholebody-train-annotations=
    
    
     
     /person_keypoints_train2017_wholebody_pifpaf_style.json --wholebody-apply-local-centrality-weights

    
    
   
   

Evaluation

To evaluate a trained model you first need to download the annotation file from this link and than you can use the following command to evaluate a model:

python -m openpifpaf.eval --dataset=wholebody --checkpoint=shufflenetv2k30-wholebody --force-complete-pose --seed-threshold=0.2 --force-complete-caf-th=0.001  --wholebody-val-annotations=
   
   
    
    /coco_wholebody_val_v1.0.json

   
   

The shufflenetv2k30-wholebody is our pretrained model, which was trained with the command from the Training section and will automatically be downloaded via torchhub. If you wish to evaluate your own model you can replace it with a local path to your model.

Related projects

Citation

If you find our research useful please cite us:

@misc{zauss2021keypoint,
      title={Keypoint Communities}, 
      author={Duncan Zauss and Sven Kreiss and Alexandre Alahi},
      year={2021},
      eprint={2110.00988},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

License

The code in this repository is licensed under the MIT license. For more information please refer to the LICENSE file. This project is largely based on OpenPifPaf. OpenPifPaf is licensed under the GNU AGPLv3 license, for more information please refer to OpenPifPaf's license.

Comments
  • Weird prediction results on custom 24 kps car dataset

    Weird prediction results on custom 24 kps car dataset

    I have a dataset with 91 trannning & 9 validation images where 24 car kps are annotated and annotations are transformed to coco format as apollo where keypoints array is of size 24*3.

    I trained the shufflenetv2k16 24kps model. Trainning seems correct as shown below

    INFO:openpifpaf.network.trainer:{'type': 'train', 'epoch': 1, 'batch': 0, 'n_batches': 18, 'time': 0.471, 'data_time': 4.657, 'lr': 2e-05, 'loss': 3540.623, 'head_losses': [3.702, 310.73, 0.799, 205.145, 3015.488, 4.761]}
    INFO:openpifpaf.network.trainer:{'type': 'train', 'epoch': 1, 'batch': 11, 'n_batches': 18, 'time': 0.434, 'data_time': 0.0, 'lr': 2e-05, 'loss': 3779.676, 'head_losses': [8.102, 372.573, 0.679, 149.955, 3243.949, 4.419]}
    INFO:openpifpaf.network.trainer:applying ema
    INFO:openpifpaf.network.trainer:{'type': 'train-epoch', 'epoch': 2, 'loss': 3874.88336, 'head_losses': [2.99886, 334.91886, 0.84728, 231.23997, 3298.75681, 6.1216], 'time': 14.2, 'n_clipped_grad': 0, 'max_norm': 0.0}
    INFO:openpifpaf.network.trainer:restoring params from before ema
    
    ...
    
    INFO:openpifpaf.network.trainer:{'type': 'train', 'epoch': 100, 'batch': 0, 'n_batches': 18, 'time': 0.625, 'data_time': 2.206, 'lr': 2e-05, 'loss': 2648.88, 'head_losses': [-40.191, 469.212, 0.059, 123.052, 2095.671, 1.078]}
    INFO:openpifpaf.network.trainer:{'type': 'train', 'epoch': 100, 'batch': 11, 'n_batches': 18, 'time': 0.427, 'data_time': 0.0, 'lr': 2e-05, 'loss': 2616.817, 'head_losses': [-36.641, 429.025, 0.159, 120.99, 2102.774, 0.509]}
    INFO:openpifpaf.network.trainer:applying ema
    INFO:openpifpaf.network.trainer:{'type': 'train-epoch', 'epoch': 101, 'loss': 3276.90862, 'head_losses': [-45.2643, 351.73443, 0.60137, 196.80784, 2769.34305, 3.68621], 'time': 14.2, 'n_clipped_grad': 0, 'max_norm': 0.0}
    INFO:openpifpaf.network.trainer:restoring params from before ema
    
    ...
    
    INFO:openpifpaf.network.trainer:{'type': 'train', 'epoch': 199, 'batch': 0, 'n_batches': 18, 'time': 0.46, 'data_time': 4.563, 'lr': 2e-06, 'loss': 3563.018, 'head_losses': [-61.656, 281.741, 0.614, 203.755, 3135.36, 3.203]}
    INFO:openpifpaf.network.trainer:{'type': 'train', 'epoch': 199, 'batch': 11, 'n_batches': 18, 'time': 0.435, 'data_time': 0.0, 'lr': 2e-06, 'loss': 3455.956, 'head_losses': [-54.041, 327.122, 0.471, 192.066, 2987.241, 3.097]}
    INFO:openpifpaf.network.trainer:applying ema
    INFO:openpifpaf.network.trainer:{'type': 'train-epoch', 'epoch': 200, 'loss': 3159.92377, 'head_losses': [-52.87015, 321.86455, 0.44325, 169.9907, 2718.06543, 2.42999], 'time': 20.8, 'n_clipped_grad': 0, 'max_norm': 0.0}
    INFO:openpifpaf.network.trainer:model written: outputs/shufflenetv2k16-211021-024942-apollo.pkl.epoch200
    
    ...
    
    INFO:openpifpaf.network.trainer:{'type': 'train', 'epoch': 299, 'batch': 0, 'n_batches': 18, 'time': 0.614, 'data_time': 6.553, 'lr': 2e-07, 'loss': 3374.045, 'head_losses': [-54.347, 392.751, 0.522, 170.645, 2860.723, 3.751]}
    INFO:openpifpaf.network.trainer:{'type': 'train', 'epoch': 299, 'batch': 11, 'n_batches': 18, 'time': 0.443, 'data_time': 0.0, 'lr': 2e-07, 'loss': 2769.724, 'head_losses': [-43.393, 481.309, 0.127, 131.402, 2198.701, 1.578]}
    INFO:openpifpaf.network.trainer:applying ema
    INFO:openpifpaf.network.trainer:{'type': 'train-epoch', 'epoch': 300, 'loss': 3054.62056, 'head_losses': [-52.68392, 345.90691, 0.38009, 155.51899, 2603.45154, 2.04698], 'time': 17.1, 'n_clipped_grad': 0, 'max_norm': 0.0}
    INFO:openpifpaf.network.trainer:model written: outputs/shufflenetv2k16-211021-024942-apollo.pkl.epoch300
    

    However, all predictions are empty array.

    image

    The prediction codes are shown below

    import os
    import numpy as np
    from PIL import Image
    import cv2
    import openpifpaf
    
    if __name__ == "__main__":
    
       src_img_folder = './images/train'
       dst_img_folder = './res/train'
       weights = './outputs/shufflenetv2k16-211021-024942-apollo.pkl.epoch200' 
     
       predictor = openpifpaf.Predictor(checkpoint=weights)
    
       img_names = os.listdir(src_img_folder)
       img_names = sorted(img_names)
    
       for name_idx,name_ in enumerate(img_names):
    
           I = Image.open(os.path.join(src_img_folder,name_)).convert('RGB')
    
           predictions, gt_anns, image_meta = predictor.pil_image(I)
    
           print(f"========== predictions: {predictions} ===============")
           print(f"========== image_meta: {image_meta} ==============")
    
    opened by KleinXin 9
  • Questions regarding the application of this paper/code.

    Questions regarding the application of this paper/code.

    Hello Thank you for the open-source code and great work! I had the following questions -

    1)Can we apply this code to a use-case as follows- A static camera is observing 2-3 moving robots in its FOV,and if I retrain the network with the images of the robot,with its corresponding ground-truth keypoints,the network can still predict the 2d keypoints of the moving robot right?

    2)For this does the robot have to be at a particular distance from the camera,so that the keypoint estimation is accurate enough?Meaning is the network's accuracy dependent on "the distance the object is from the camera"?

    3)Also can the network be used in a case where the camera observing the scene is moving as well as the object whose pose is to be estimated is also moving?Will the network's accuracy be effected in this case?

    Any suggestions/replies are greatly appreciated! Thank you

    opened by poornimajd 2
  • Running with multi-gpu or choosing a single gpu for inference

    Running with multi-gpu or choosing a single gpu for inference

    I can't seem to get this to run in a multi-gpu enviroment. I've tried setting the export CUDA_VISIBLE_DEVICES=0 in my bash enviroment but that didn't seem to do the trick. Any help is appreciated!

    opened by pablovela5620 2
  • Prediction result for soccer.jpeg is not as good as the shown image

    Prediction result for soccer.jpeg is not as good as the shown image

    Screenshot from 2021-11-09 23-33-13 I use the same command 'python -m openpifpaf.predict docs/soccer.jpeg --checkpoint=shufflenetv2k30-wholebody --line-width=2 --show ' to run the prediction but the hands of the front person are not aligned as your shown image. Did you use a different weight? Or is there any other problems?

    opened by Kairobo 1
  • Issues running webcam/videos

    Issues running webcam/videos

    Getting the following errors when trying to use on webcam or video source

    (kc) [email protected]:~/0Dev/Keypoint_Communities$ python -m openpifpaf.video --source ../immersed-ganerated/data/iterim/test_vid3.webm --checkpoint=shufflenetv2k30-wholebody --line-width=2 --showINFO:__main__:neural network device: cuda (CUDA available: True, count: 1)
    INFO:openpifpaf.decoder.factory:No specific decoder requested. Using the first one from:
      --decoder=cifcaf:0
      --decoder=posesimilarity:0
    Use any of the above arguments to select one or multiple decoders and to suppress this message.
    INFO:openpifpaf.predictor:neural network device: cuda (CUDA available: True, count: 1)
    INFO:openpifpaf.show.animation_frame:video output = None
    Traceback (most recent call last):
      File "/home/pablo/miniconda3/envs/kc/lib/python3.8/runpy.py", line 194, in _run_module_as_main
        return _run_code(code, main_globals, None,
      File "/home/pablo/miniconda3/envs/kc/lib/python3.8/runpy.py", line 87, in _run_code
        exec(code, run_globals)
      File "/home/pablo/miniconda3/envs/kc/lib/python3.8/site-packages/openpifpaf/video.py", line 158, in <module>
        main()
      File "/home/pablo/miniconda3/envs/kc/lib/python3.8/site-packages/openpifpaf/video.py", line 129, in main
        for (ax, ax_second), (preds, _, meta) in \
      File "/home/pablo/miniconda3/envs/kc/lib/python3.8/site-packages/openpifpaf/predictor.py", line 112, in dataset
        yield from self.dataloader(dataloader)
      File "/home/pablo/miniconda3/envs/kc/lib/python3.8/site-packages/openpifpaf/predictor.py", line 149, in dataloader
        yield from self.enumerated_dataloader(enumerate(dataloader))
      File "/home/pablo/miniconda3/envs/kc/lib/python3.8/site-packages/openpifpaf/predictor.py", line 115, in enumerated_dataloader
        for batch_i, item in enumerated_dataloader:
      File "/home/pablo/miniconda3/envs/kc/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 521, in __next__
        data = self._next_data()
      File "/home/pablo/miniconda3/envs/kc/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1203, in _next_data
        return self._process_data(data)
      File "/home/pablo/miniconda3/envs/kc/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1229, in _process_data
        data.reraise()
      File "/home/pablo/miniconda3/envs/kc/lib/python3.8/site-packages/torch/_utils.py", line 425, in reraise
        raise self.exc_type(msg)
    AttributeError: Caught AttributeError in DataLoader worker process 0.
    Original Traceback (most recent call last):
      File "/home/pablo/miniconda3/envs/kc/lib/python3.8/site-packages/torch/utils/data/_utils/worker.py", line 287, in _worker_loop
        data = fetcher.fetch(index)
      File "/home/pablo/miniconda3/envs/kc/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py", line 28, in fetch
        data.append(next(self.dataset_iter))
      File "/home/pablo/miniconda3/envs/kc/lib/python3.8/site-packages/openpifpaf/stream.py", line 119, in __iter__
        capture = cv2.VideoCapture(self.source)
    AttributeError: 'NoneType' object has no attribute 'VideoCapture'
    

    I have no problem running the demo on images as shown in the readme, its only with videos

    opened by pablovela5620 1
  • Common model for human and car keypoint

    Common model for human and car keypoint

    HI, thanks for sharing! Can you please elaborate more, in your second demo video we can see you detected human and vehicle key points in each frame? Was it two different models of a single model? If it is a single model please let me know where to get it. Thank you in advance.

    opened by capslocknanda 1
  • can't run the demo

    can't run the demo

    Hi there, I can't run the webcam and the demo with image source either. Not sure what's happening.

    Working Environment 
    OS: macOS 12.1 21C52 x86_64 
    Host: iMac19,1
    Kernel: 21.2.0
    CPU: Intel i5-8500 (6) @ 3.00GHz
    GPU: Radeon Pro 570X
    

    I used miniconda to install this repo. Not sure whether it needs cuda support

    opened by yktangac 4
  • PytorchStreamReader failed reading zip archive: failed finding central directory

    PytorchStreamReader failed reading zip archive: failed finding central directory

    When i run the demo, i meet the error like this:

    INFO:__main__:neural network device: cuda (CUDA available: True, count: 2)
    Traceback (most recent call last):
      File "/root/miniconda3/envs/key_com/lib/python3.8/runpy.py", line 192, in _run_module_as_main
        return _run_code(code, main_globals, None,
      File "/root/miniconda3/envs/key_com/lib/python3.8/runpy.py", line 85, in _run_code
        exec(code, run_globals)
      File "/root/miniconda3/envs/key_com/lib/python3.8/site-packages/openpifpaf/predict.py", line 128, in <module>
        main()
      File "/root/miniconda3/envs/key_com/lib/python3.8/site-packages/openpifpaf/predict.py", line 103, in main
        predictor = Predictor(
      File "/root/miniconda3/envs/key_com/lib/python3.8/site-packages/openpifpaf/predictor.py", line 29, in __init__
        self.model_cpu, _ = network.Factory().factory(head_metas=head_metas)
      File "/root/miniconda3/envs/key_com/lib/python3.8/site-packages/openpifpaf/network/factory.py", line 302, in factory
        net_cpu, epoch = self.from_checkpoint()
      File "/root/miniconda3/envs/key_com/lib/python3.8/site-packages/openpifpaf/network/factory.py", line 366, in from_checkpoint
        checkpoint = torch.hub.load_state_dict_from_url(
      File "/root/miniconda3/envs/key_com/lib/python3.8/site-packages/torch/hub.py", line 590, in load_state_dict_from_url
        return torch.load(cached_file, map_location=map_location)
      File "/root/miniconda3/envs/key_com/lib/python3.8/site-packages/torch/serialization.py", line 600, in load
        with _open_zipfile_reader(opened_file) as opened_zipfile:
      File "/root/miniconda3/envs/key_com/lib/python3.8/site-packages/torch/serialization.py", line 242, in __init__
        super(_open_zipfile_reader, self).__init__(torch._C.PyTorchFileReader(name_or_buffer))
    RuntimeError: PytorchStreamReader failed reading zip archive: failed finding central directory
    

    My torch version is 1.10.0.

    opened by sulei1998 2
  • Problems during operation

    Problems during operation

    Hello author, I'm trying to re-implement your code, but in the process, I'm encountering problems. First I need to state that I successfully installed the environment and ran the steps: python Compute_edge_weights.py Secondly, After running this command (python Compute_training_weights.py) the following error is reported:

    Traceback (most recent call last): File "/home/hcb/Keypoint_Communities/src/Compute_training_weights.py", line 314, in create_weights_wholebody() File "/home/hcb/Keypoint_Communities/src/Compute_training_weights.py", line 192, in create_weights_wholebody draw_skeletons_wb(WHOLEBODY_STANDING_POSE, inverse_normalize(w_harm_cl_euclid, kps=kps), File "/home/hcb/Keypoint_Communities/src/Compute_training_weights.py", line 60, in draw_skeletons_wb from openpifpaf.annotation import Annotation # pylint: disable=import-outside-toplevel File "/home/hcb/anaconda3/envs/keypoint/lib/python3.8/site-packages/openpifpaf/init.py", line 11, in cpp_extension.register_ops() File "/home/hcb/anaconda3/envs/keypoint/lib/python3.8/site-packages/openpifpaf/cpp_extension.py", line 26, in register_ops torch.ops.load_library(ext_specs.origin) File "/home/hcb/anaconda3/envs/keypoint/lib/python3.8/site-packages/torch/_ops.py", line 104, in load_library ctypes.CDLL(path) File "/home/hcb/anaconda3/envs/keypoint/lib/python3.8/ctypes/init.py", line 373, in init self._handle = _dlopen(self._name, mode) OSError: /home/hcb/anaconda3/envs/keypoint/lib/python3.8/site-packages/openpifpaf/_cpp.so: undefined symbol: ZN5torch6detail10class_baseC2ERKSsS3_SsRKSt9type_infoS6 directory

    (I only changed the path, no other code was touched. The code can generate a folder named docs_wb, but it is empty.My directory is shown in the figure)

    cheers

    opened by hechengbo-H 2
  • Error while installing openpifpaf

    Error while installing openpifpaf

    While running the requirements.txt I got stuck on an issue regarding openpifpaf==0.13.0. It seems like the version cannot be found. Do you have a way to bypass that ?

    opened by samymdihi 4
Owner
Duncan Zauss
Duncan Zauss
🏅 The Most Comprehensive List of Kaggle Solutions and Ideas 🏅

🏅 Collection of Kaggle Solutions and Ideas 🏅

Farid Rashidi 2.3k Jan 08, 2023
This is a Keras implementation of a CNN for estimating age, gender and mask from a camera.

face-detector-age-gender This is a Keras implementation of a CNN for estimating age, gender and mask from a camera. Before run face detector app, expr

Devdreamsolution 2 Dec 04, 2021
Deep Surface Reconstruction from Point Clouds with Visibility Information

Data, code and pretrained models for the paper Deep Surface Reconstruction from Point Clouds with Visibility Information.

Raphael Sulzer 23 Jan 04, 2023
A treasure chest for visual recognition powered by PaddlePaddle

简体中文 | English PaddleClas 简介 飞桨图像识别套件PaddleClas是飞桨为工业界和学术界所准备的一个图像识别任务的工具集,助力使用者训练出更好的视觉模型和应用落地。 近期更新 2021.11.1 发布PP-ShiTu技术报告,新增饮料识别demo 2021.10.23 发

4.6k Dec 31, 2022
Generative Adversarial Networks(GANs)

Generative Adversarial Networks(GANs) Vanilla GAN ClusterGAN Vanilla GAN Model Structure Final Generator Structure A MLP with 2 hidden layers of hidde

Zhenbang Feng 2 Nov 05, 2021
The spiritual successor to knockknock for PyTorch Lightning, get notified when your training ends

Who's there? The spiritual successor to knockknock for PyTorch Lightning, to get a notification when your training is complete or when it crashes duri

twsl 70 Oct 06, 2022
基于tensorflow 2.x的图片识别工具集

Classification.tf2 基于tensorflow 2.x的图片识别工具集 功能 粗粒度场景图片分类 细粒度场景图片分类 其他场景图片分类 模型部署 tensorflow serving本地推理和docker部署 tensorRT onnx ... 数据集 https://hyper.a

Wei Qi 1 Nov 03, 2021
Implementation of fast algorithms for Maximum Spanning Tree (MST) parsing that includes fast ArcMax+Reweighting+Tarjan algorithm for single-root dependency parsing.

Fast MST Algorithm Implementation of fast algorithms for (Maximum Spanning Tree) MST parsing that includes fast ArcMax+Reweighting+Tarjan algorithm fo

Miloš Stanojević 11 Oct 14, 2022
Implementation of SiameseXML (ICML 2021)

SiameseXML Code for SiameseXML: Siamese networks meet extreme classifiers with 100M labels Best Practices for features creation Adding sub-words on to

Extreme Classification 35 Nov 06, 2022
A keras implementation of ENet (abandoned for the foreseeable future)

ENet-keras This is an implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation, ported from ENet-training (lua-t

Pavlos 115 Nov 23, 2021
Deep Sea Treasure Environment for Multi-Objective Optimization Research

DeepSeaTreasure Environment Installation In order to get started with this environment, you can install it using the following command: python3 -m pip

imec IDLab 6 Nov 14, 2022
A web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks

This project is a web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks. Thanks for NVlabs' excelle

K.L. 150 Dec 15, 2022
Si Adek Keras is software VR dangerous object detection.

Si Adek Python Keras Sistem Informasi Deteksi Benda Berbahaya Keras Python. Version 1.0 Developed by Ananda Rauf Maududi. Developed date: 24 November

Ananda Rauf 1 Dec 21, 2021
zeus is a Python implementation of the Ensemble Slice Sampling method.

zeus is a Python implementation of the Ensemble Slice Sampling method. Fast & Robust Bayesian Inference, Efficient Markov Chain Monte Carlo (MCMC), Bl

Minas Karamanis 197 Dec 04, 2022
PyTorch implementations of the paper: "Learning Independent Instance Maps for Crowd Localization"

IIM - Crowd Localization This repo is the official implementation of paper: Learning Independent Instance Maps for Crowd Localization. The code is dev

tao han 91 Nov 10, 2022
CONetV2: Efficient Auto-Channel Size Optimization for CNNs

CONetV2: Efficient Auto-Channel Size Optimization for CNNs Exciting News! CONetV2: Efficient Auto-Channel Size Optimization for CNNs has been accepted

Mahdi S. Hosseini 3 Dec 13, 2021
Pytoydl: A toy deep learning framework built upon numpy.

Documents: https://pytoydl.readthedocs.io/zh/latest/ Pytoydl A toy deep learning framework built upon numpy. You can star this repository to keep trac

28 Dec 10, 2022
Bagua is a flexible and performant distributed training algorithm development framework.

Bagua is a flexible and performant distributed training algorithm development framework.

786 Dec 17, 2022
[WACV 2020] Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints

Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints Official implementation for Reducing Footskate in Human Motion Recon

Virginia Tech Vision and Learning Lab 38 Nov 01, 2022
The codebase for our paper "Generative Occupancy Fields for 3D Surface-Aware Image Synthesis" (NeurIPS 2021)

Generative Occupancy Fields for 3D Surface-Aware Image Synthesis (NeurIPS 2021) Project Page | Paper Xudong Xu, Xingang Pan, Dahua Lin and Bo Dai GOF

xuxudong 97 Nov 10, 2022