Pydrawer: The Python package for visualizing curves and linear transformations in a super simple way

Overview

pydrawer 📐

licence

The Python package for visualizing curves and linear transformations in a super simple way.

✏️ Installation

Install pydrawer package with pip:

$ pip install pydrawer

or clone the repository:

$ git clone https://github.com/dylannalex/pydrawer.git

✏️ Usage

📌 Drawing curves

To start drawing curves you need to create a GraphingCalculator object:

from pydrawer import GraphingCalculator

graphing_calculator = GraphingCalculator()

pydrawer let you draw parametrized curves and mathematical functions. Lets create and draw the square root of x function for this example:

def square_root(x):
    return x ** (1 / 2)

graphing_calculator.draw(square_root, (0, 25))  # We want to draw the function from x = 0 to x = 25

You can also accomplish the same result by defining the square root of x as a parameterized function:

def square_root(t):
    return t, t ** (1 / 2)

graphing_calculator.draw(square_root, (0, 25))  # We want to draw the curve from t = 0 to t = 25

📌 Linear transformations

pydrawer provides a curves module which contains functions for modifying curves with linear transformations.

from pydrawer import curves

📍 curves.transform_curve()

This function let you apply a linear transformation (specified as a matrix) to a parametrized curve. curves.transform_curve() returns the transformed curve.

Parameters:

  • curve: parametrized curve
  • matrix: linear transformation's matrix

The matrix is a tuple of tuples (or list of lists) which has the same structure as numpy arrays. A matrix
[ a b ]
[ c d ]
should be defined as:

matrix = ((a,b), (c,d))

Example:

matrix = ((1, 0), (0, -2))
graphing_calculator.draw(curves.transform_curve(square_root, matrix), (0, 25))

📍 curves.rotate_curve()

Rotates a curve anticlockwise by the given angle.

Parameters:

  • curve: parametrized curve
  • angle: angle in radians
    Example:
angle = pi / 4  # 90 degrees
graphing_calculator.draw(curves.rotate_curve(square_root, angle), (0, 25))

📍 curves.scale_curve()

Scales the given curve by the given scalar.

Parameters:

  • curve: parametrized curve
  • scalar: scalar for scaling the curve
    Example:
scalar = 2  # The function is going to be twice as bigger
graphing_calculator.draw(curves.scale_curve(square_root, 2), (0, 25))
Comments
  • Update Latex expressions

    Update Latex expressions

    Some changes might feel unnecessary, but I felt like it would be better to have those changes. Like the more conventional font for real number set or the extra line of explanation for linear transformation.

    opened by ritamsaha00 8
  • v1.1.1

    v1.1.1

    • Updated plotter:
      • Created 'curvipy.ScreenConfiguration(window_title, background_color, window_width, window_height)'.
        • Removed 'window_title' and 'background_color' attributes from 'curvipy.Plotter' as they are now defined at 'curvipy.ScreenConfiguration'.
      • Updated 'curvipy.AxesConfiguration' attributes:
        • Added 'show_axes_direction'
        • Added 'x_ticks_distance' and 'y_ticks_distance'
          • Removed 'x_axis_scale' and 'y_axis_scale'
        • Renamed 'x_axis_ticks' and 'y_axis_ticks' to 'x_ticks' and 'y_ticks'
        • Renamed 'x_axis_tick_decimals' and 'y_axis_tick_decimals' to 'x_ticks_decimals' and 'y_ticks_decimals'
        • Renamed 'x_axis_tick_number_align' and 'y_axis_tick_number_align' to 'x_ticks_align' and 'y_ticks_align'
        • Renamed 'tick_number_color' to 'ticks_color'
        • Renamed 'tick_number_font' to 'ticks_font'
      • Updated 'curvipy.PlottingConfiguration' attributes:
        • Removed 'PlottingConfiguration.show_vector_values'
        • Removed 'PlottingConfiguration.vector_values_line_color'
        • Removed 'PlottingConfiguration.vector_values_line_width'
    opened by dylannalex 0
  • Update GIFs from docs/source/img for curvipy v1.1.0

    Update GIFs from docs/source/img for curvipy v1.1.0

    GIFs shown on documentation (both README and docs) are from curvipy v1.0.1. To update the animations, just run the code shown above the GIF and record the screen with some third party software (e.g. ActivePresenter).

    documentation good first issue 
    opened by dylannalex 0
  • v1.1.0

    v1.1.0

    • Updated plotter:
      • 'curvipy.Plotter' now draws axes ticks and arrows (to indicate the axis direction).
      • Removed 'interval: curvipy.Interval' parameter of 'curvipy.Plotter.plot_curve()' and 'curvipy.Plotter.plot_animated_curve()' methods.
      • 'curvipy.Plotter.plot_vector()' can now display vector's components.
      • Created 'curvipy.PlottingConfiguration' and 'curvipy.AxesConfiguration'
        • Updated 'curvipy.Plotter' builder parameters to 'curvipy.Plotter(window_title: str = "Curvipy", background_color: str = "#FFFFFF", plotting_config: PlottingConfiguration, axes_config: AxesConfiguration)'.
        • Now 'x_axis_scale' and 'y_axis_scale' (defined at curvipy.AxesConfiguration') can take any real value (negative or positive) and default to one.
    • Updated vector:
      • Added vector, addition, subtraction, scaling and equality.
      • Created 'curvipy.Vector.place()' method which moves the vector to a specified set of coordinates.
    • Updated curves:
      • Removed 'interval: curvipy.Interval' parameter of 'curvipy.Curve.points()' method.
      • Added 'interval: curvipy.Interval' parameter to 'curvipy.Function' and 'curvipy.ParametricFunction' builder.
    • Updated documentation.
    opened by dylannalex 0
  • Show numbers on the x and y axes

    Show numbers on the x and y axes

    A few aspects to keep in mind:

    • Number shown depend on 'curvipy.Plotter.x_axis_scale' and 'curvipy.Plotter.y_axis_scale'.
    • Add a new 'curvipy.Plotter' attribute to indicate the quantity of numbers to be displayed on the axes.
    • Add a method 'curvipy.ScreenFacade' to display text on screen. This method will be used by 'curvipy.Plotter' to display the numbers on the axes.
    enhancement 
    opened by dylannalex 0
  • Add vector addition and subtraction operations.

    Add vector addition and subtraction operations.

    Given the vectors $\vec{v}$ and $\vec{w}$, we want to compute $\vec{n} = \vec{v} + \vec{w}$ and $\vec{m} = \vec{v} - \vec{w}$ as shown below:

    import curvipy
    
    v = curvipy.Vector([10, 10])
    w = curvipy.Vector([5, -5])
    n = v + w
    m = v - w
    

    This is not possible on Curvipy 1.0.1. To do so, users have to calculate $\vec{n}$ and $\vec{m}$ manually:

    import curvipy
    
    v = curvipy.Vector([10, 10])
    w = curvipy.Vector([5, -5])
    n = curvipy.Vector([10 + 5, 10 + (-5)])
    m = curvipy.Vector([10 - 5, 10 - (-5)])
    
    enhancement 
    opened by dylannalex 0
  • Add an 'exclude' parameter to 'curvipy.Interval'

    Add an 'exclude' parameter to 'curvipy.Interval'

    The idea is to exclude a list of values from the interval, so they won't be considered when plotting the curve.

    curvipy.Interval:
        Parameters
        ----------
        start : int or float
            Real number in which the interval starts.
        end : int or float
            Real number in which the interval ends.
        samples: int
            Number of values within the interval. The more samples, the more precise the \
            curve plot is.
        exclude: list[int or float]
            List of values that will be excluded from the interval.
    

    Example: imagine we want to plot the curve $f(x) = 1/x$ on the interval $x \in [-a, a]$. Since $f(0)$ is not defined, the current way of doing that is to create two intervals:

    import curvipy
    
    
    def f(x):
        return 1 / x
    
    
    plotter = curvipy.Plotter()
    
    a = 10
    curve = curvipy.Function(f)
    interval_one = curvipy.Interval(-a, -0.1, 100)
    interval_two = curvipy.Interval(0.1, a, 100)
    
    plotter.plot_curve(curve, interval_one)
    plotter.plot_curve(curve, interval_two)
    plotter.wait()
    

    With an 'exclude' parameter on 'curvipy.Interval' class, we could accomplish the same goal with only one interval:

    import curvipy
    
    
    def f(x):
        return 1 / x
    
    
    plotter = curvipy.Plotter()
    
    a = 10
    curve = curvipy.Function(f)
    interval = curvipy.Interval(-a, a, 200, exclude=[0])
    
    plotter.plot_curve(curve, interval)
    plotter.wait()
    

    If somebody wants to work on it, please make a comment. Implementing this is not as easy as it seems and might need modifications in other classes like curvipy.Plotter and/or curvipy.Curve.

    enhancement wontfix 
    opened by dylannalex 0
  • 1.0.1

    1.0.1

    This update brings a structure improvement and better documentation. Curvipy 1.0.0 scripts are completely compatible with this new version:

    • Made modules private. Now importing curvipy will only import its classes.
    • Created 'curvipy._screen' module. This module contains the 'ScreenFacade' class which encapsulates the turtle package functionalities.
    • Updated documentation.
    opened by dylannalex 0
  • Bump to 1.0.0

    Bump to 1.0.0

    • Added 'curvipy.curve' module. This module contains the classes:
      • 'Curve': base class for all two-dimensional curves.
      • 'Function': unction that given a real number returns another real number.
      • 'ParametricFunction': function that given a real number returns a 2-dimensional vector.
      • 'TransformedCurve': applies a linear transformation to the given curve.
    • Added 'curvipy.interval' module. This module contains the class 'Interval', which is the interval in which a curve will be plotted.
    • Added 'curvipy.vector' module. This module contains the class 'Vector', which is a two-dimensional vector.
    • Updated 'curvipy.graphing_calculator' module (now named 'curvipy.plotter'):
      • Renamed 'curvipy.graphing_calculator' to 'curvipy.plotter' and its class 'GraphingCalculator' to 'Plotter'.
      • Replaced methods 'draw_vector', 'draw_curve' and 'draw_animated_curve' with 'plot_vector', 'plot_curve' and 'plot_animated_curve' respectively.
    • Deleted 'curvipy.lintrans' module. Linear transformations can now be defined with 'curvipy.TransformedCurve' class.
    • Updated README and docs.
    • Deleted 'examples' folder since README and docs now contains a Usage Example section.
    opened by dylannalex 0
  • A rotation function

    A rotation function

    A function that rotates the curve by a certain $\theta$ angle. The implementation is easy, it will take $\theta$, and the curve as input, and method is just like TransformedCurve, but the matrix used will be:

    $$A(\theta)=\begin{pmatrix} \cos\theta & -\sin\theta\ \sin\theta & \cos\theta \end{pmatrix}$$

    enhancement good first issue 
    opened by ritamsaha00 2
Releases(1.1.1)
  • 1.1.1(Dec 31, 2022)

    • Updated plotter:
      • Created 'curvipy.ScreenConfiguration(window_title, background_color, window_width, window_height)'.
        • Removed 'window_title' and 'background_color' attributes from 'curvipy.Plotter' as they are now defined at 'curvipy.ScreenConfiguration'.
      • Updated 'curvipy.AxesConfiguration' attributes:
        • Added 'show_axes_direction'
        • Added 'x_ticks_distance' and 'y_ticks_distance'
          • Removed 'x_axis_scale' and 'y_axis_scale'
        • Renamed 'x_axis_ticks' and 'y_axis_ticks' to 'x_ticks' and 'y_ticks'
        • Renamed 'x_axis_tick_decimals' and 'y_axis_tick_decimals' to 'x_ticks_decimals' and 'y_ticks_decimals'
        • Renamed 'x_axis_tick_number_align' and 'y_axis_tick_number_align' to 'x_ticks_align' and 'y_ticks_align'
        • Renamed 'tick_number_color' to 'ticks_color'
        • Renamed 'tick_number_font' to 'ticks_font'
      • Updated 'curvipy.PlottingConfiguration' attributes:
        • Removed 'PlottingConfiguration.show_vector_values'
        • Removed 'PlottingConfiguration.vector_values_line_color'
        • Removed 'PlottingConfiguration.vector_values_line_width'
    Source code(tar.gz)
    Source code(zip)
  • 1.1.0(Dec 28, 2022)

    • Updated plotter:
      • 'curvipy.Plotter' now draws axes ticks and arrows (to indicate the axis direction).
      • Removed 'interval: curvipy.Interval' parameter of 'curvipy.Plotter.plot_curve()' and 'curvipy.Plotter.plot_animated_curve()' methods.
      • 'curvipy.Plotter.plot_vector()' can now display vector's components.
      • Created 'curvipy.PlottingConfiguration' and 'curvipy.AxesConfiguration'
        • Updated 'curvipy.Plotter' builder parameters to 'curvipy.Plotter(window_title: str = "Curvipy", background_color: str = "#FFFFFF", plotting_config: PlottingConfiguration, axes_config: AxesConfiguration)'.
        • Now 'x_axis_scale' and 'y_axis_scale' (defined at curvipy.AxesConfiguration') can take any real value (negative or positive) and default to one.
    • Updated vector:
      • Added vector, addition, subtraction, scaling and equality.
      • Created 'curvipy.Vector.place()' method which moves the vector to a specified set of coordinates.
    • Updated curves:
      • Removed 'interval: curvipy.Interval' parameter of 'curvipy.Curve.points()' method.
      • Added 'interval: curvipy.Interval' parameter to 'curvipy.Function' and 'curvipy.ParametricFunction' builder.
    • Updated documentation.
    Source code(tar.gz)
    Source code(zip)
  • 1.0.1(Nov 28, 2022)

    This update brings a structure improvement and better documentation. Curvipy 1.0.0 scripts are completely compatible with this new version:

    • Made modules private. Now importing curvipy will only import its classes.
    • Created 'curvipy._screen' module. This module contains the 'ScreenFacade' class which encapsulates the turtle package functionalities.
    • Updated documentation.
    Source code(tar.gz)
    Source code(zip)
  • 1.0.0(Oct 22, 2022)

    • Added 'curvipy.curve' module. This module contains the classes:
      • 'Curve': base class for all two-dimensional curves.
      • 'Function': unction that given a real number returns another real number.
      • 'ParametricFunction': function that given a real number returns a 2-dimensional vector.
      • 'TransformedCurve': applies a linear transformation to the given curve.
    • Added 'curvipy.interval' module. This module contains the class 'Interval', which is the interval in which a curve will be plotted.
    • Added 'curvipy.vector' module. This module contains the class 'Vector', which is a two-dimensional vector.
    • Updated 'curvipy.graphing_calculator' module (now named 'curvipy.plotter'):
      • Renamed 'curvipy.graphing_calculator' to 'curvipy.plotter' and its class 'GraphingCalculator' to 'Plotter'.
      • Replaced methods 'draw_vector', 'draw_curve' and 'draw_animated_curve' with 'plot_vector', 'plot_curve' and 'plot_animated_curve' respectively.
    • Deleted 'curvipy.lintrans' module. Linear transformations can now be defined with 'curvipy.TransformedCurve' class.
    • Updated README and docs.
    • Deleted 'examples' folder since README and docs now contains a Usage Example section.
    Source code(tar.gz)
    Source code(zip)
Owner
Dylan Tintenfich
:books: Systems engineering student at Universidad Tecnológica Nacional Mendoza.
Dylan Tintenfich
Python ts2vg package provides high-performance algorithm implementations to build visibility graphs from time series data.

ts2vg: Time series to visibility graphs The Python ts2vg package provides high-performance algorithm implementations to build visibility graphs from t

Carlos Bergillos 26 Dec 17, 2022
TensorDebugger (TDB) is a visual debugger for deep learning. It extends TensorFlow with breakpoints + real-time visualization of the data flowing through the computational graph

TensorDebugger (TDB) is a visual debugger for deep learning. It extends TensorFlow (Google's Deep Learning framework) with breakpoints + real-time visualization of the data flowing through the comput

Eric Jang 1.4k Dec 15, 2022
Visualization of the World Religion Data dataset by Correlates of War Project.

World Religion Data Visualization Visualization of the World Religion Data dataset by Correlates of War Project. Mostly personal project to famirializ

Emile Bangma 1 Oct 15, 2022
The open-source tool for building high-quality datasets and computer vision models

The open-source tool for building high-quality datasets and computer vision models. Website • Docs • Try it Now • Tutorials • Examples • Blog • Commun

Voxel51 2.4k Jan 07, 2023
This is a super simple visualization toolbox (script) for transformer attention visualization ✌

Trans_attention_vis This is a super simple visualization toolbox (script) for transformer attention visualization ✌ 1. How to prepare your attention m

Mingyu Wang 3 Jul 09, 2022
Machine learning beginner to Kaggle competitor in 30 days. Non-coders welcome. The program starts Monday, August 2, and lasts four weeks. It's designed for people who want to learn machine learning.

30-Days-of-ML-Kaggle 🔥 About the Hands On Program 💻 Machine learning beginner → Kaggle competitor in 30 days. Non-coders welcome The program starts

Roja Achary 145 Jan 01, 2023
Generate a roam research like Network Graph view from your Notion pages.

Notion Graph View Export Notion pages to a Roam Research like graph view.

Steve Sun 214 Jan 07, 2023
A toolkit to generate MR sequence diagrams

mrsd: a toolkit to generate MR sequence diagrams mrsd is a Python toolkit to generate MR sequence diagrams, as shown below for the basic FLASH sequenc

Julien Lamy 3 Dec 25, 2021
Official Matplotlib cheat sheets

Official Matplotlib cheat sheets

Matplotlib Developers 6.7k Jan 09, 2023
A tool for creating Toontown-style nametags in Panda3D

Toontown-Nametag Toontown-Nametag is a tool for creating Toontown Online/Toontown Rewritten-style nametags in Panda3D. It contains a function, createN

BoggoTV 2 Dec 23, 2021
Tools for calculating and visualizing Elo-like ratings of MLB teams using Retosheet data

Overview This project uses historical baseball games data to calculate an Elo-like rating for MLB teams based on regular season match ups. The Elo rat

Lukas Owens 0 Aug 25, 2021
Colormaps for astronomers

cmastro: colormaps for astronomers 🔭 This package contains custom colormaps that have been used in various astronomical applications, similar to cmoc

Adrian Price-Whelan 12 Oct 11, 2022
Sparkling Pandas

SparklingPandas SparklingPandas aims to make it easy to use the distributed computing power of PySpark to scale your data analysis with Pandas. Sparkl

366 Oct 27, 2022
An interactive dashboard for visualisation, integration and classification of data using Active Learning.

AstronomicAL An interactive dashboard for visualisation, integration and classification of data using Active Learning. AstronomicAL is a human-in-the-

45 Nov 28, 2022
Some useful extensions for Matplotlib.

mplx Some useful extensions for Matplotlib. Contour plots for functions with discontinuities plt.contour mplx.contour(max_jump=1.0) Matplotlib has pro

Nico Schlömer 519 Dec 30, 2022
FairLens is an open source Python library for automatically discovering bias and measuring fairness in data

FairLens FairLens is an open source Python library for automatically discovering bias and measuring fairness in data. The package can be used to quick

Synthesized 69 Dec 15, 2022
Collection of scripts for making high quality beautiful math-related posters.

Poster Collection of scripts for making high quality beautiful math-related posters. The poster can have as large printing size as 3x2 square feet wit

Nattawut Phetmak 3 Jun 09, 2022
Visualize your pandas data with one-line code

PandasEcharts 简介 基于pandas和pyecharts的可视化工具 安装 pip 安装 $ pip install pandasecharts 源码安装 $ git clone https://github.com/gamersover/pandasecharts $ cd pand

陈华杰 2 Apr 13, 2022
Custom Plotly Dash components based on Mantine React Components library

Dash Mantine Components Dash Mantine Components is a Dash component library based on Mantine React Components Library. It makes it easier to create go

Snehil Vijay 239 Jan 08, 2023
Pebble is a stat's visualization tool, this will provide a skeleton to develop a monitoring tool.

Pebble is a stat's visualization tool, this will provide a skeleton to develop a monitoring tool.

Aravind Kumar G 2 Nov 17, 2021