Transformer training code for sequential tasks

Overview

Sequential Transformer

This is a code for training Transformers on sequential tasks such as language modeling. Unlike the original Transformer architecture, it uses caching of previous representations and relative position embeddings to better adapt to sequential tasks. In addition, the code also implements the following projects as described below and in this blog post:

Requirements

You need PyTorch 0.4.1 or above and a cuda-enabled GPU to run the code. If there are multiple GPUs available, the code uses nn.DataParallel to utilize them. For better efficiency, enable distributed training by --distributed argument, which can run on multiple nodes.

Adaptive Attention Span

This code can be used for running experiments in Adaptive Attention Span for Transformers paper. The adaptive span allows a model to learn an optimal context size for each self-attention head from training data. As shown in the below figure, only few heads require long attention span, thus making it possible to increase the context size to 8k tokens without increasing computation time and memory footprint significantly.

An argument --adapt-span enables adaptive span. Otherwise a model will have a fixed attention span. The adaptive-span is implemented as a nn.Module to make it easier to plug it into other models.

Running experiments in the paper

Scripts for running experiments in the paper are located in ./experiments/ directory. For example, a smaller 8-layer version of our model can be trained on a single GPU by running:

bash experiments/enwik8_small.sh

It should reach about 1.3bpc on dev after 150k steps.

For training larger models, multiple GPUs are recommended. In the script files, you can configure the number of available GPUs. Increase the --batch-split argument if you run out of GPU memory (it splits batches into smaller pieces without changing the final result).

We obtained the following results in our experiments:

Experiment #params dev test
enwik8 38M 1.04 bpb 1.02 bpb
enwik8_large 209M 1.00 bpb 0.98 bpb
text8 39M 1.05 bpc 1.11 bpc
text8_large 209M 1.01 bpc 1.07 bpc

A large model training takes about 1.2sec/batch near the end (initially it's faster because the attention spans are smaller) on 8 V100 GPUs. So, for example, the whole enwik8_large training of 170k steps should take less than 2.4 days.

Pre-trained models

You can download pre-trained models by running the get_pretrained.sh script. Then the same scripts in ./experiments/ can be used to evaluate those models. Since the download script puts models in ./checkpoints/, make sure there is no file with the same name. Note that these pre-trained models are obtained by rerunning the training scripts after the code cleanup, so there are small differences from the above results due to the randomness of the training.

All-attention Network

The code also can be used for training All-attention Networks introduced in Augmenting Self-attention with Persistent Memory. If --pers-mem-size argument is set to N, all FF sublayers will be removed from the model and N persistent memory vectors will be added to every self-attention sublayer. The following experiments can be found in ./experiments/ directory.

Experiment #params dev test
enwik8_pers_small.sh 39M 1.03 bpb 1.01 bpb
enwik8_pers.sh 114M 1.00 bpb 0.98 bpb
wiki103_pers.sh 133M 18.8 ppl * 19.7 ppl *

(*This number is slightly better than the paper because it includes end-of-line as a token.)

License

The code is licensed under CC-BY-NC license. See the LICENSE file for more details.

Acknowledgement

We thank Xavier Martinet for helping with cleaning the code. The data preprocessing scripts are downloaded from awd-lstm and transformer-XL repos. The adagrad_with_grad_clip.py is mostly adapted from PyTorch.

Owner
Meta Research
Meta Research
Translation for Trilium Notes. Trilium Notes 中文版.

Trilium Translation 中文说明 This repo provides a translation for the awesome Trilium Notes. Currently, I have translated Trilium Notes into Chinese. Test

743 Jan 08, 2023
Code for Text Prior Guided Scene Text Image Super-Resolution

Code for Text Prior Guided Scene Text Image Super-Resolution

82 Dec 26, 2022
Trankit is a Light-Weight Transformer-based Python Toolkit for Multilingual Natural Language Processing

Trankit: A Light-Weight Transformer-based Python Toolkit for Multilingual Natural Language Processing Trankit is a light-weight Transformer-based Pyth

652 Jan 06, 2023
Learn meanings behind words is a key element in NLP. This project concentrates on the disambiguation of preposition senses. Therefore, we train a bert-transformer model and surpass the state-of-the-art.

New State-of-the-Art in Preposition Sense Disambiguation Supervisor: Prof. Dr. Alexander Mehler Alexander Henlein Institutions: Goethe University TTLa

Dirk Neuhäuser 4 Apr 06, 2022
Use fastai-v2 with HuggingFace's pretrained transformers

FastHugs Use fastai v2 with HuggingFace's pretrained transformers, see the notebooks below depending on your task: Text classification: fasthugs_seq_c

Morgan McGuire 111 Nov 16, 2022
PyTorch Implementation of "Bridging Pre-trained Language Models and Hand-crafted Features for Unsupervised POS Tagging" (Findings of ACL 2022)

Feature_CRF_AE Feature_CRF_AE provides a implementation of Bridging Pre-trained Language Models and Hand-crafted Features for Unsupervised POS Tagging

Jacob Zhou 6 Apr 29, 2022
Official PyTorch implementation of SegFormer

SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers Figure 1: Performance of SegFormer-B0 to SegFormer-B5. Project page

NVIDIA Research Projects 1.4k Dec 29, 2022
DeBERTa: Decoding-enhanced BERT with Disentangled Attention

DeBERTa: Decoding-enhanced BERT with Disentangled Attention This repository is the official implementation of DeBERTa: Decoding-enhanced BERT with Dis

Microsoft 1.2k Jan 03, 2023
chaii - hindi & tamil question answering

chaii - hindi & tamil question answering This is the solution for rank 5th in Kaggle competition: chaii - Hindi and Tamil Question Answering. The comp

abhishek thakur 33 Dec 18, 2022
Yet Another Sequence Encoder - Encode sequences to vector of vector in python !

Yase Yet Another Sequence Encoder - encode sequences to vector of vectors in python ! Why Yase ? Yase enable you to encode any sequence which can be r

Pierre PACI 12 Aug 19, 2021
Implementation of "Adversarial purification with Score-based generative models", ICML 2021

Adversarial Purification with Score-based Generative Models by Jongmin Yoon, Sung Ju Hwang, Juho Lee This repository includes the official PyTorch imp

15 Dec 15, 2022
Twitter-NLP-Analysis - Twitter Natural Language Processing Analysis

Twitter-NLP-Analysis Business Problem I got last @turk_politika 3000 tweets with

Çağrı Karadeniz 7 Mar 12, 2022
Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration

Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration This is the official repository for the EMNLP 2021 long pa

70 Dec 11, 2022
초성 해석기 based on ko-BART

초성 해석기 개요 한국어 초성만으로 이루어진 문장을 입력하면, 완성된 문장을 예측하는 초성 해석기입니다. 초성: ㄴㄴ ㄴㄹ ㅈㅇㅎ 예측 문장: 나는 너를 좋아해 모델 모델은 SKT-AI에서 공개한 Ko-BART를 이용합니다. 데이터 문장 단위로 이루어진 아무 코퍼스나

Dawoon Jung 29 Oct 28, 2022
Ελληνικά νέα (Python script) / Greek News Feed (Python script)

Ελληνικά νέα (Python script) / Greek News Feed (Python script) Ελληνικά English Το 2017 είχα υλοποιήσει ένα Python script για να εμφανίζει τα τωρινά ν

Loren Kociko 1 Jun 14, 2022
Generating new names based on trends in data using GPT2 (Transformer network)

MLOpsNameGenerator Overall Goal The goal of the project is to develop a model that is capable of creating Pokémon names based on its description, usin

Gustav Lang Moesmand 2 Jan 10, 2022
A paper list of pre-trained language models (PLMs).

Large-scale pre-trained language models (PLMs) such as BERT and GPT have achieved great success and become a milestone in NLP.

RUCAIBox 124 Jan 02, 2023
HAIS_2GNN: 3D Visual Grounding with Graph and Attention

HAIS_2GNN: 3D Visual Grounding with Graph and Attention This repository is for the HAIS_2GNN research project. Tao Gu, Yue Chen Introduction The motiv

Yue Chen 1 Nov 26, 2022
Différents programmes créant une interface graphique a l'aide de Tkinter pour simplifier la vie des étudiants.

GP211-Grand-Projet Ce repertoire contient tout les programmes nécessaires au bon fonctionnement de notre projet-logiciel. Cette interface graphique es

1 Dec 21, 2021
iBOT: Image BERT Pre-Training with Online Tokenizer

Image BERT Pre-Training with iBOT Official PyTorch implementation and pretrained models for paper iBOT: Image BERT Pre-Training with Online Tokenizer.

Bytedance Inc. 435 Jan 06, 2023