AERO 421: Spacecraft Attitude, Dynamics, and Control Final Project.

Overview

AERO - 421 Final Project Redevelopment

Spacecraft Attitude, Dynamics, and Control: Simulation to determine and control a satellite's attitude in LEO.

Background

AERO-421, or Spacecraft Attitude, Dynamics, and Controls, is a class taught at the California Polytechnic State University at San Luis Obispo (Cal Poly SLO) which serves as an...

"Introduction to spacecraft attitude dynamics and control... [and] fundamentals of guidance and navigation systems... [with emphasis in] analysis and design of control systems for aerospace vehicles." - Cal Poly Aerospace Engineering Course Catalog

The final project in the course was to develop a simulation to determine a satellite's attitude in Low Earth Orbit (LEO), consider and model detumbling from a launch vehicle, consider and model disturbances due to external forces i.e., Solar Radiation Pressure (SRP), and to consider and model control via onboard reaction wheels.

More information regarding the 6 different parts can be found below.

The initial project was developed in MATLAB, however, the project will be completely redeveloped in Python to showcase controls and software development skillsets.

Part 0: Context and Given Data

The project will explore modeling and simulation of the various stages of a spacecraft mission, specifically simulating the attitude dynamics from initial spacecraft deployment to operation. In this simulation, the spacecraft is an Earth observing satellite and an attitude determination and control system must be designed using reaction wheels to ensure the spacecraft maintains pointing nadir.

Orbital Data:

  • h (angular momentum) = 53335.2 km^2/s
  • e (eccentricity) = 0
  • Ω (Right Ascension of Ascending Node) = 0 deg
  • i (inclination) = 98.43 deg
  • ω (Argument of Perigee) = 0 deg
  • θ (True Anomaly) = 0 deg
  • ϵ-LVLH (Initial Quaternion relating the body to the LVLH frame) = [0, 0, 0]; η = 1

Detumble Phase:

  • Spacecraft is a square box with 2 meters on each edge with total mass of 640 kg
  • Initial Angular Velocity of [-0.05, 0.03, 0.2] rad/s relating the body to the ECI frame

Normal Operations:

  • Spacecraft bus is a 2 meter cube with mass of 500 kg. The center of mass of the spacecraft is located at the geometric center of the bus.
  • A rectangular sensor is attached to the face pointing towards the Earth (+Z-axis) and is 1 meter long and 0.25 meters square. The sensor has a mass of 100 kg.
  • Two solar panels are deployed along the +/- Y-axis and are constrained to rotate about the +/- Y-axis. The solar panels are 3 meters long (in the Y-axis), 2 meters wide, and 0.05 meters thick. Each panel has a mass of 20 kg and the center of mass is located at the geometric center of the panel. The solar panels do not rotate relative to the spacecraft bus.
  • Assume all spacecraft components have uniform density with centers of mass located at the geometric centers of each component
  • Magnetically, the spacecraft residual magnetic dipole moment can be modeled as pointing in the -Z direction with magnitude 0.5 A-m^2
  • See the figure below for the spacecraft schematic
  • Because the thrusters are not actually fully-modulated thrusters, the spacecraft will have a residual angular velocity of [0.001, -0.001, 0.002] rad/s relating the body to the ECI frame after the detumble phase.
  • During operation the spacecraft is required to point at the target on the ground to within 0.001 degrees 3-sigma using the reaction wheels used in the reaction wheels part.

Spacecraft Schematic

Part 1: Mass Properties

Determine the mass and inertial properties of the spacecraft for both the detumble and the normal operations phases.

Outputs:

  • Total mass of the spacecraft
  • Center of mass relative to the spacecraft bus center of mass. The body frame will be located at the center of mass of the whole spacecraft
  • Intertia matrix of the whole spacecraft about the center of mass of the spacecraft

Part 2: Torque Free Motion

Model the torque free orbital and attitude motion of the spacecraft

Outputs: Plots for...

  • Euler angles and quaternions relating body to ECI reference frames
  • Angular velocity of the spacecraft in body components for one orbit of the normal operations phase

Part 3: Detumble

Simulate the motion of the satellite during the detumble phase. Assume fully modulated thrusters and use direct velocity feedback

Outputs: Plots for...

  • Euler angles and quaternions relating body to ECI reference frames
  • Angular velocity of the spacecraft in body components for the detumble phase
  • Torque components in the body frame

Part 4: Disturbance Simulation

Add the four disturbance models to the simulation:

  • Atmospheric Drag
  • Solar Pressure
  • Gravity Gradient
  • Earth Magnetic Field

Use the following model for the atmospheric density. Notice that h is the height above the Earth's surface in kilometers where R_Earth equals 6378km

Disturbance Model

Consider the simulation epoch to be March 20, 2021. Disregard any variations of the ECI representation of the sunlight direction during the simulation.

Outputs: Plots for...

  • Euler angles and quaternions relating the body to the ECI reference frame
  • Euler angles and quaternions relating the body to the LVLH reference frame
  • Angular velocity of the spacecraft relative to the ECI frame expressed in body components
  • Angular velocity of the spacecraft relative to the LVLH frame expressed in body components
  • Torque components for atmospheric drag, solar radiation pressure, gravity gradient, and earth magnetic field

Part 5: Reaction Wheel Control

Determine the control gains for a full state feedback 3-axis reaction wheel control system. Use the requirements of ζ = 0.65 and t_s = 30 sec

The positions of the 3 reaction wheels are [1, 0, 0], [0, 1, 0], and [0, 0, 1]. Each reaction wheel can be modeled as a simple cylinder with radius of 0.3 m and a height of 0.02 m

Outputs: Plots for...

  • Euler angles and quaternions relating the body to ECI reference frame
  • Euler angles and quaternions relating the body to LVLH reference frame
  • Angular velocity of the spacecraft relative to the ECI reference frame expressed in body components
  • Angular velocity of the spacecraft relative to LVLH frame expressed in body components
  • Commanded moment from the determined control law
  • Wheel speed of each reaction wheel

Part 6: Visualization

Determine and animate the quanterions of the spacecraft, from ECI to body frame, for the duration of 1-5 revolutions.

Output:

  • Table of quaternion and time data
  • Video or other animation file to show the revolution of the spacecraft
Owner
Gagandeep Thapar
- (he/they) - 4th year Aerospace Engineering (w/ CS Minor) at Cal Poly SLO - Interested in Launch Vehicle and Spacecraft Controls and Avionics
Gagandeep Thapar
Smart EQ connect - Custom Integration for Home Assistant

Smart EQ Connect platform as a Custom Component for Home Assistant.

Rene Nulsch 2 Jan 04, 2022
Home-Assistant MQTT bridge for Panasonic Comfort Cloud

Panasonic Comfort Cloud MQTT Bridge Home-Assistant MQTT bridge for Panasonic Comfort Cloud. Note: Currently this brige is a one evening prototype proj

Santtu Järvi 2 Jan 04, 2023
A Python script to monitor the latest block on an LCD.

PiHole-Monitoring A Python script to monitor the latest block on a lcd display. The first number represents the dns queries from the last 24h, the sec

Maxi 4 Dec 05, 2022
A python project based on a TV show Wheel of Fortune

Wheel-of-Fortune-using-Python Wheel of Fortune in python this game is the hands-on project in Python 3 Programming Specialization offered By Universit

Eszter Pai 1 Jan 03, 2022
A ch341dll Wrap is for using in Python 32bits windows to access I2C SPI and MDIO (by GPIO), and Demo with display PC sreen on OLED by i2c or SPI .

ch341dll_wrap_typcal_app A ch341dll Wrap is for using in Python 32bits windows to access I2C SPI and MDIO (by GPIO). In addition, I provided 3 Demo. I

13 Jan 02, 2023
AERO 421: Spacecraft Attitude, Dynamics, and Control Final Project.

AERO - 421 Final Project Redevelopment Spacecraft Attitude, Dynamics, and Control: Simulation to determine and control a satellite's attitude in LEO.

Gagandeep Thapar 3 Dec 16, 2022
An alternative to Demise-Assistant-Batch made entirely in Python for more capabilities.

Demise-Assistant-Python An alternative to Demise-Assistant-Batch made entirely in Python for more capabilities. IMPORTANT NOTE Demise-Assistant-Batch

SkelOrganisation 1 Nov 24, 2021
Code and build instructions for Snap, a simple Raspberry Pi and LED machine to show you how expensive the electricyty is at the moment

Code and build instructions for Snap, a simple Raspberry Pi and LED machine to show you how expensive the electricyty is at the moment. On row of LEDs shows the cost of the hour, the other row the co

Johan Jonk Stenström 3 Sep 08, 2022
An emulated LED scoreboard for Major League Baseball ⚾

An LED scoreboard for Major League Baseball. Displays a live scoreboard for your team's game on that day.

Tyler Porter 8 Apr 08, 2022
LifeSaver automatically, periodically saves USB flash drive data into the PC

LifeSaver automatically, periodically saves USB flash drive data into the PC. Theoriticaly it will work with any any connected drive ex - Hard Disk ,SSD ... But, can't handle Backing up multipatition

siddharth dhaka 4 Sep 26, 2021
Designed and coded a password manager in Python with Arduino integration

Designed and coded a password manager in Python with Arduino integration. The Program uses a master user to login, and stores account data such as usernames and passwords to the master user. While lo

Noah Colbourne 1 Jan 16, 2022
Hook and simulate global mouse events in pure Python

mouse Take full control of your mouse with this small Python library. Hook global events, register hotkeys, simulate mouse movement and clicks, and mu

BoppreH 722 Dec 31, 2022
Raspberry Pi Pico support for VS Code

Pico-Go VS Code Extension Pico-Go provides code auto-completion and allows you to communicate with your Raspberry Pi Pico board using the built-in REP

Chris Wood 114 Dec 28, 2022
Parametric open source reconstructions of Voron printed parts

The Parametric Voron This repository contains Fusion 360 reconstructions of various printed parts from the Voron printers

Matthew Lloyd 26 Dec 19, 2022
A PYTHON Library for Controlling Motors using SOLO Motor Controllers with RASPBERRY PI, Linux, windows, and more!

A PYTHON Library for Controlling Motors using SOLO Motor Controllers with RASPBERRY PI, Linux, windows, and more!

SOLO Motor Controllers 3 Apr 29, 2022
Scapy: the Python-based interactive packet manipulation program & library. Supports Python 2 & Python 3.

Scapy Scapy is a powerful Python-based interactive packet manipulation program and library. It is able to forge or decode packets of a wide number of

SecDev 8.3k Jan 08, 2023
Connect a TeslaMate instance to Home Assistant, using MQTT

TeslaBuddy Connect a TeslaMate instance to Home Assistant, using MQTT. It allows basic control of your Tesla vehicle via Home Assistant (currently, ju

4 May 23, 2022
This Home Assistant custom component adding support for controlling Midea dehumidifiers on local network.

This custom component for Home Assistant adds support for Midea air conditioner and dehumidifier appliances via the local area network. homeassistant-

Nenad Bogojevic 92 Dec 31, 2022
Python application, displaying currently played track from Spotify on OLED display connected via I2C

RaspberryPi Spotify OLED Display This application will display currently played track on SSD1306 OLED display connected to RaspberryPi. Displayed stuf

Wojciech Olech 2 Dec 30, 2021
Home Assistant custom integration for e-distribución

e-Distribución is an energy distribution company that covers most of South Spain area. If you live in this area, you probably are able to register into their website to get some information about you

VMG 17 Sep 07, 2022