This repository is for our EMNLP 2021 paper "Automated Generation of Accurate & Fluent Medical X-ray Reports"

Overview

Introduction: X-Ray Report Generation

This repository is for our EMNLP 2021 paper "Automated Generation of Accurate & Fluent Medical X-ray Reports". Our work adopts x-ray (also including some history data for patients if there are any) as input, a CNN is used to learn the embedding features for x-ray, as a result, disease-state-style information (Previously, almost all work used detected disease embedding for input of text generation network which could possibly exclude the false negative diseases) is extracted and fed into the text generation network (transformer). To make sure the consistency of detected diseases and generated x-ray reports, we also create a interpreter to enforce the accuracy of the x-ray reports. For details, please refer to here.

Data we used for experiments

We use two datasets for experiments to validate our method:

Performance on two datasets

Datasets Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L
Open-I Single-view 0.463 0.310 0.215 0.151 0.186 0.377
Multi-view 0.476 0.324 0.228 0.164 0.192 0.379
Multi-view w/ Clinical History 0.485 0.355 0.273 0.217 0.205 0.422
Full Model (w/ Interpreter) 0.515 0.378 0.293 0.235 0.219 0.436
MIMIC Single-view 0.447 0.290 0.200 0.144 0.186 0.317
Multi-view 0.451 0.292 0.201 0.144 0.185 0.320
Multi-view w/ Clinical History 0.491 0.357 0.276 0.223 0.213 0.389
Full Model (w/ Interpreter) 0.495 0.360 0.278 0.224 0.222 0.390

Environments for running codes

  • Operating System: Ubuntu 18.04

  • Hardware: tested with RTX 2080 TI (11G)

  • Software: tested with PyTorch 1.5.1, Python3.7, CUDA 10.0, tensorboardX, tqdm

  • Anaconda is strongly recommended

  • Other Libraries: Spacy, SentencePiece, nlg-eval

How to use our code for train/test

Step 0: Build your vocabulary model with SentencePiece (tools/vocab_builder.py)

  • Please make sure that you have preprocess the medical reports accurately.
  • We use the top 900 high-frequency words
  • We use 100 unigram tokens extracted from SentencePiece to avoid the out-of-vocabulary situation.
  • In total we have 1000 words and tokens. Update: You can skip step 0 and use the vocabulary files in Vocabulary/*.model

Step 1: Train the LSTM and/or Transformer models, which are just text classifiers, to obtain 14 common disease labels.

  • Use the train_text.py to train the models on your working datasets. For example, the MIMIC-CXR comes with CheXpert labels; you can use these labels as ground-truth to train a differentiable text classifier model. Here the text classifier is a binary predictor (postive/uncertain) = 1 and (negative/unmentioned) = 0.
  • Assume the trained text classifier is perfect and exactly reflects the medical reports. Although this is not the case, in practice, it gives us a good approximation of how good the generated reports are. Human evaluation is also needed to evalutate the generated reports.
  • The goals here are:
  1. Evaluate the performance of the generated reports by comparing the predicted labels and the ground-truth labels.
  2. Use the trained models to fine-tune medical reports' output.

Step 2: Test the text classifier models using the train_text.py with:

  • PHASE = 'TEST'
  • RELOAD = True --> Load the trained models for testing

Step 3: Transfer the trained model to obtain 14 common disease labels for the Open-I datasets and any dataset that doesn't have ground-truth labels.

  • Transfer the learned model to the new dataset by predicting 14 disease labels for the entire dataset by running extract_label.py on the target dataset. The output file is file2label.json
  • Split them into train, validation, and test sets (we have already done that for you, just put the file2label.json in a place where the NLMCXR dataset can see).
  • Build your own text classifier (train_text.py) based on the extracted disease labels (treat them as ground-truth labels).
  • In the end, we want the text classifiers (LSTM/Transformer) to best describe your model's output on the working dataset.

Step 4: Get additional labels using (tools/count_nounphrases.py)

  • Note that 14 disease labels are not enough to generate accurate reports. This is because for the same disease, we might have different ways to express it. For this reason, additional labels are needed to enhance the quality of medical reports.
  • The output of the coun_nounphrases.py is a json file, you can use it as input to the exising datasets such as MIMIC or NLMCXR.
  • Therefore, in total we have 14 disease labels + 100 noun-phrases = 114 disease-related topics/labels. Please check the appendix in our paper.

Step 5: Train the ClsGen model (Classifier-Generator) with train_full.py

  • PHASE = 'TRAIN'
  • RELOAD = False --> We trained our model from scratch

Step 6: Train the ClsGenInt model (Classifier-Generator-Interpreter) with train_full.py

  • PHASE = 'TRAIN'
  • RELOAD = True --> Load the ClsGen trained from the step 4, load the Interpreter model from Step 1 or 3
  • Reduce the learning rate --> Since the ClsGen has already converged, we need to reduce the learning rate to fine-tune the word representation such that it minimize the interpreter error.

Step 7: Generate the outputs

  • Use the infer function in the train_full.py to generate the outputs. This infer function ensures that no ground-truth labels and medical reports are being used in the inference phase (we used teacher forcing / ground-truth labels during training phase).
  • Also specify the threshold parameter, see the appendix of our paper on which threshold to choose from.
  • Final specify your the name of your output files.

Step 8: Evaluate the generated reports.

  • Use the trained text classifier model in step 1 to evaluate the clinical accuracy
  • Use the nlg-eval library to compute BLEU-1 to BLEU-4 scores and other metrics.

Our pretrained models

Our model is uploaded in google drive, please download the model from

Model Name Download Link
Our Model for MIMIC Google Drive
Our Model for NLMCXR Google Drive

Citation

If it is helpful to you, please cite our work:

@inproceedings{nguyen-etal-2021-automated,
    title = "Automated Generation of Accurate {\&} Fluent Medical {X}-ray Reports",
    author = "Nguyen, Hoang  and
      Nie, Dong  and
      Badamdorj, Taivanbat  and
      Liu, Yujie  and
      Zhu, Yingying  and
      Truong, Jason  and
      Cheng, Li",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2021",
    address = "Online and Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.emnlp-main.288",
    doi = "10.18653/v1/2021.emnlp-main.288",
    pages = "3552--3569",
}

Owner
no name
no name
Code for Mesh Convolution Using a Learned Kernel Basis

Mesh Convolution This repository contains the implementation (in PyTorch) of the paper FULLY CONVOLUTIONAL MESH AUTOENCODER USING EFFICIENT SPATIALLY

Yi_Zhou 35 Jan 03, 2023
Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image classification, in Pytorch

Transformer in Transformer Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image c

Phil Wang 272 Dec 23, 2022
Urban mobility simulations with Python3, RLlib (Deep Reinforcement Learning) and Mesa (Agent-based modeling)

Deep Reinforcement Learning for Smart Cities Documentation RLlib: https://docs.ray.io/en/master/rllib.html Mesa: https://mesa.readthedocs.io/en/stable

1 May 15, 2022
NeuralTalk is a Python+numpy project for learning Multimodal Recurrent Neural Networks that describe images with sentences.

#NeuralTalk Warning: Deprecated. Hi there, this code is now quite old and inefficient, and now deprecated. I am leaving it on Github for educational p

Andrej 5.3k Jan 07, 2023
A library for answering questions using data you cannot see

A library for computing on data you do not own and cannot see PySyft is a Python library for secure and private Deep Learning. PySyft decouples privat

OpenMined 8.5k Jan 02, 2023
PySlowFast: video understanding codebase from FAIR for reproducing state-of-the-art video models.

PySlowFast PySlowFast is an open source video understanding codebase from FAIR that provides state-of-the-art video classification models with efficie

Meta Research 5.3k Jan 03, 2023
Prompts - Read a textfile of prompts and import into anki via ankiconnect

prompts read a textfile of prompts and import into anki via ankiconnect Usage In

Alexander Cobleigh 2 Jul 28, 2022
[CVPR 2022 Oral] EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation

EPro-PnP EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation In CVPR 2022 (Oral). [paper] Hanshen

同济大学智能汽车研究所综合感知研究组 ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University) 842 Jan 04, 2023
Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper

Continual Learning With Filter Atom Swapping Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper If find t

11 Aug 29, 2022
Groceries ARL: Association Rules (Birliktelik Kuralı)

Groceries_ARL Association Rules (Birliktelik Kuralı) Birliktelik kuralları, mark

Şebnem 5 Feb 08, 2022
A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising (CVPR 2020 Oral & TPAMI 2021)

ELD The implementation of CVPR 2020 (Oral) paper "A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising" and its journal (TPAMI) v

Kaixuan Wei 359 Jan 01, 2023
Multi-Anchor Active Domain Adaptation for Semantic Segmentation (ICCV 2021 Oral)

Multi-Anchor Active Domain Adaptation for Semantic Segmentation Munan Ning*, Donghuan Lu*, Dong Wei†, Cheng Bian, Chenglang Yuan, Shuang Yu, Kai Ma, Y

Munan Ning 36 Dec 07, 2022
以孤立语假设和宽度优先搜索为基础,构建了一种多通道堆叠注意力Transformer结构的斗地主ai

ddz-ai 介绍 斗地主是一种扑克游戏。游戏最少由3个玩家进行,用一副54张牌(连鬼牌),其中一方为地主,其余两家为另一方,双方对战,先出完牌的一方获胜。 ddz-ai以孤立语假设和宽度优先搜索为基础,构建了一种多通道堆叠注意力Transformer结构的系统,使其经过大量训练后,能在实际游戏中获

freefuiiismyname 88 May 15, 2022
Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr\"om Method (NeurIPS 2021)

Skyformer This repository is the official implementation of Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr"om Method (NeurIPS 2021).

Qi Zeng 46 Sep 20, 2022
Convolutional Neural Network for 3D meshes in PyTorch

MeshCNN in PyTorch SIGGRAPH 2019 [Paper] [Project Page] MeshCNN is a general-purpose deep neural network for 3D triangular meshes, which can be used f

Rana Hanocka 1.4k Jan 04, 2023
PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge"

FSGAN Here is the official PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge". This project achieve the translation between

Deng-Ping Fan 32 Oct 10, 2022
Have you ever wondered how cool it would be to have your own A.I

Have you ever wondered how cool it would be to have your own A.I. assistant Imagine how easier it would be to send emails without typing a single word, doing Wikipedia searches without opening web br

Harsh Gupta 1 Nov 09, 2021
This repository allows the user to automatically scale a 3D model/mesh/point cloud on Agisoft Metashape

Metashape-Utils This repository allows the user to automatically scale a 3D model/mesh/point cloud on Agisoft Metashape, given a set of 2D coordinates

INSCRIBE 4 Nov 07, 2022
Code for our EMNLP 2021 paper “Heterogeneous Graph Neural Networks for Keyphrase Generation”

GATER This repository contains the code for our EMNLP 2021 paper “Heterogeneous Graph Neural Networks for Keyphrase Generation”. Our implementation is

Jiacheng Ye 12 Nov 24, 2022
PyTorch implementation of Deformable Convolution

PyTorch implementation of Deformable Convolution !!!Warning: There is some issues in this implementation and this repo is not maintained any more, ple

Wei Ouyang 893 Dec 18, 2022