This repository is for our EMNLP 2021 paper "Automated Generation of Accurate & Fluent Medical X-ray Reports"

Overview

Introduction: X-Ray Report Generation

This repository is for our EMNLP 2021 paper "Automated Generation of Accurate & Fluent Medical X-ray Reports". Our work adopts x-ray (also including some history data for patients if there are any) as input, a CNN is used to learn the embedding features for x-ray, as a result, disease-state-style information (Previously, almost all work used detected disease embedding for input of text generation network which could possibly exclude the false negative diseases) is extracted and fed into the text generation network (transformer). To make sure the consistency of detected diseases and generated x-ray reports, we also create a interpreter to enforce the accuracy of the x-ray reports. For details, please refer to here.

Data we used for experiments

We use two datasets for experiments to validate our method:

Performance on two datasets

Datasets Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L
Open-I Single-view 0.463 0.310 0.215 0.151 0.186 0.377
Multi-view 0.476 0.324 0.228 0.164 0.192 0.379
Multi-view w/ Clinical History 0.485 0.355 0.273 0.217 0.205 0.422
Full Model (w/ Interpreter) 0.515 0.378 0.293 0.235 0.219 0.436
MIMIC Single-view 0.447 0.290 0.200 0.144 0.186 0.317
Multi-view 0.451 0.292 0.201 0.144 0.185 0.320
Multi-view w/ Clinical History 0.491 0.357 0.276 0.223 0.213 0.389
Full Model (w/ Interpreter) 0.495 0.360 0.278 0.224 0.222 0.390

Environments for running codes

  • Operating System: Ubuntu 18.04

  • Hardware: tested with RTX 2080 TI (11G)

  • Software: tested with PyTorch 1.5.1, Python3.7, CUDA 10.0, tensorboardX, tqdm

  • Anaconda is strongly recommended

  • Other Libraries: Spacy, SentencePiece, nlg-eval

How to use our code for train/test

Step 0: Build your vocabulary model with SentencePiece (tools/vocab_builder.py)

  • Please make sure that you have preprocess the medical reports accurately.
  • We use the top 900 high-frequency words
  • We use 100 unigram tokens extracted from SentencePiece to avoid the out-of-vocabulary situation.
  • In total we have 1000 words and tokens. Update: You can skip step 0 and use the vocabulary files in Vocabulary/*.model

Step 1: Train the LSTM and/or Transformer models, which are just text classifiers, to obtain 14 common disease labels.

  • Use the train_text.py to train the models on your working datasets. For example, the MIMIC-CXR comes with CheXpert labels; you can use these labels as ground-truth to train a differentiable text classifier model. Here the text classifier is a binary predictor (postive/uncertain) = 1 and (negative/unmentioned) = 0.
  • Assume the trained text classifier is perfect and exactly reflects the medical reports. Although this is not the case, in practice, it gives us a good approximation of how good the generated reports are. Human evaluation is also needed to evalutate the generated reports.
  • The goals here are:
  1. Evaluate the performance of the generated reports by comparing the predicted labels and the ground-truth labels.
  2. Use the trained models to fine-tune medical reports' output.

Step 2: Test the text classifier models using the train_text.py with:

  • PHASE = 'TEST'
  • RELOAD = True --> Load the trained models for testing

Step 3: Transfer the trained model to obtain 14 common disease labels for the Open-I datasets and any dataset that doesn't have ground-truth labels.

  • Transfer the learned model to the new dataset by predicting 14 disease labels for the entire dataset by running extract_label.py on the target dataset. The output file is file2label.json
  • Split them into train, validation, and test sets (we have already done that for you, just put the file2label.json in a place where the NLMCXR dataset can see).
  • Build your own text classifier (train_text.py) based on the extracted disease labels (treat them as ground-truth labels).
  • In the end, we want the text classifiers (LSTM/Transformer) to best describe your model's output on the working dataset.

Step 4: Get additional labels using (tools/count_nounphrases.py)

  • Note that 14 disease labels are not enough to generate accurate reports. This is because for the same disease, we might have different ways to express it. For this reason, additional labels are needed to enhance the quality of medical reports.
  • The output of the coun_nounphrases.py is a json file, you can use it as input to the exising datasets such as MIMIC or NLMCXR.
  • Therefore, in total we have 14 disease labels + 100 noun-phrases = 114 disease-related topics/labels. Please check the appendix in our paper.

Step 5: Train the ClsGen model (Classifier-Generator) with train_full.py

  • PHASE = 'TRAIN'
  • RELOAD = False --> We trained our model from scratch

Step 6: Train the ClsGenInt model (Classifier-Generator-Interpreter) with train_full.py

  • PHASE = 'TRAIN'
  • RELOAD = True --> Load the ClsGen trained from the step 4, load the Interpreter model from Step 1 or 3
  • Reduce the learning rate --> Since the ClsGen has already converged, we need to reduce the learning rate to fine-tune the word representation such that it minimize the interpreter error.

Step 7: Generate the outputs

  • Use the infer function in the train_full.py to generate the outputs. This infer function ensures that no ground-truth labels and medical reports are being used in the inference phase (we used teacher forcing / ground-truth labels during training phase).
  • Also specify the threshold parameter, see the appendix of our paper on which threshold to choose from.
  • Final specify your the name of your output files.

Step 8: Evaluate the generated reports.

  • Use the trained text classifier model in step 1 to evaluate the clinical accuracy
  • Use the nlg-eval library to compute BLEU-1 to BLEU-4 scores and other metrics.

Our pretrained models

Our model is uploaded in google drive, please download the model from

Model Name Download Link
Our Model for MIMIC Google Drive
Our Model for NLMCXR Google Drive

Citation

If it is helpful to you, please cite our work:

@inproceedings{nguyen-etal-2021-automated,
    title = "Automated Generation of Accurate {\&} Fluent Medical {X}-ray Reports",
    author = "Nguyen, Hoang  and
      Nie, Dong  and
      Badamdorj, Taivanbat  and
      Liu, Yujie  and
      Zhu, Yingying  and
      Truong, Jason  and
      Cheng, Li",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2021",
    address = "Online and Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.emnlp-main.288",
    doi = "10.18653/v1/2021.emnlp-main.288",
    pages = "3552--3569",
}

Owner
no name
no name
YOLOX-CondInst - Implement CondInst which is a instances segmentation method on YOLOX

YOLOX CondInst -- YOLOX 实例分割 前言 本项目是自己学习实例分割时,复现的代码. 通过自己编程,让自己对实例分割有更进一步的了解。 若想

DDGRCF 16 Nov 18, 2022
HeatNet is a python package that provides tools to build, train and evaluate neural networks designed to predict extreme heat wave events globally on daily to subseasonal timescales.

HeatNet HeatNet is a python package that provides tools to build, train and evaluate neural networks designed to predict extreme heat wave events glob

Google Research 6 Jul 07, 2022
Official implementation of MSR-GCN (ICCV 2021 paper)

MSR-GCN Official implementation of MSR-GCN: Multi-Scale Residual Graph Convolution Networks for Human Motion Prediction (ICCV 2021 paper) [Paper] [Sup

LevonDang 42 Nov 07, 2022
Only a Matter of Style: Age Transformation Using a Style-Based Regression Model

Only a Matter of Style: Age Transformation Using a Style-Based Regression Model The task of age transformation illustrates the change of an individual

444 Dec 30, 2022
JAX + dataclasses

jax_dataclasses jax_dataclasses provides a wrapper around dataclasses.dataclass for use in JAX, which enables automatic support for: Pytree registrati

Brent Yi 35 Dec 21, 2022
Official Pytorch implementation of "Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021)

Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021) Official Pytorch implementation of Unbiased Classification

Youngkyu 17 Jan 01, 2023
BasicRL: easy and fundamental codes for deep reinforcement learning。It is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up.

BasicRL: easy and fundamental codes for deep reinforcement learning BasicRL is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up. It is

RayYoh 12 Apr 28, 2022
The source code of CVPR 2019 paper "Deep Exemplar-based Video Colorization".

Deep Exemplar-based Video Colorization (Pytorch Implementation) Paper | Pretrained Model | Youtube video 🔥 | Colab demo Deep Exemplar-based Video Col

Bo Zhang 253 Dec 27, 2022
Soomvaar is the repo which 🏩 contains different collection of 👨‍💻🚀code in Python and 💫✨Machine 👬🏼 learning algorithms📗📕 that is made during 📃 my practice and learning of ML and Python✨💥

Soomvaar 📌 Introduction Soomvaar is the collection of various codes implement in machine learning and machine learning algorithms with python on coll

Felix-Ayush 42 Dec 30, 2022
The backbone CSPDarkNet of YOLOX.

YOLOX-Backbone The backbone CSPDarkNet of YOLOX. In this project, you can enjoy: CSPDarkNet-S CSPDarkNet-M CSPDarkNet-L CSPDarkNet-X CSPDarkNet-Tiny C

Jianhua Yang 9 Aug 22, 2022
An MQA (Studio, originalSampleRate) identifier for lossless flac files written in Python.

An MQA (Studio, originalSampleRate) identifier for "lossless" flac files written in Python.

Daniel 10 Oct 03, 2022
OoD Minimum Anomaly Score GAN - Code for the Paper 'OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary'

OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary Out-of-Distribution Minimum Anomaly Score GAN (OMASGAN) C

- 8 Sep 27, 2022
Public Models considered for emotion estimation from EEG

Emotion-EEG Set of models for emotion estimation from EEG. Composed by the combination of two deep-learing models learning together (RNN and CNN) with

Victor Delvigne 21 Dec 23, 2022
Malware Analysis Neural Network project.

MalanaNeuralNetwork Description Malware Analysis Neural Network project. Table of Contents Getting Started Requirements Installation Clone Set-Up VENV

2 Nov 13, 2021
PyTorch implementation of "Optimization Planning for 3D ConvNets"

Optimization-Planning-for-3D-ConvNets Code for the ICML 2021 paper: Optimization Planning for 3D ConvNets. Authors: Zhaofan Qiu, Ting Yao, Chong-Wah N

Zhaofan Qiu 2 Jan 12, 2022
Spatial Contrastive Learning for Few-Shot Classification (SCL)

This repo contains the official implementation of Spatial Contrastive Learning for Few-Shot Classification (SCL), which presents of a novel contrastive learning method applied to few-shot image class

Yassine 34 Dec 25, 2022
Transformers based fully on MLPs

Awesome MLP-based Transformers papers An up-to-date list of Transformers based fully on MLPs without attention! Why this repo? After transformers and

Fawaz Sammani 35 Dec 30, 2022
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrai

Hugging Face 77.4k Jan 05, 2023
Group project for MFIN7036. Our goal is to predict firm profitability with text-based competition measures.

NLP_0-project Group project for MFIN7036. Our goal is to predict firm profitability with text-based competition measures1. We are a "democratic" and c

3 Mar 16, 2022
an implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation using PyTorch

revisiting-sepconv This is a reference implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation [1] using PyTorch. Given two f

Simon Niklaus 59 Dec 22, 2022