Notes on the Deep Learning book from Ian Goodfellow, Yoshua Bengio and Aaron Courville (2016)

Overview

Cover of the deep learning book by Goodfellow, Bengio and Courville

The Deep Learning Book - Goodfellow, I., Bengio, Y., and Courville, A. (2016)

This content is part of a series following the chapter 2 on linear algebra from the Deep Learning Book by Goodfellow, I., Bengio, Y., and Courville, A. (2016). It aims to provide intuitions/drawings/python code on mathematical theories and is constructed as my understanding of these concepts.

Boost your data science skills. Learn linear algebra.

I'd like to introduce a series of blog posts and their corresponding Python Notebooks gathering notes on the Deep Learning Book from Ian Goodfellow, Yoshua Bengio, and Aaron Courville (2016). The aim of these notebooks is to help beginners/advanced beginners to grasp linear algebra concepts underlying deep learning and machine learning. Acquiring these skills can boost your ability to understand and apply various data science algorithms. In my opinion, it is one of the bedrock of machine learning, deep learning and data science.

These notes cover the chapter 2 on Linear Algebra. I liked this chapter because it gives a sense of what is most used in the domain of machine learning and deep learning. It is thus a great syllabus for anyone who wants to dive in deep learning and acquire the concepts of linear algebra useful to better understand deep learning algorithms.

You can find all the articles here.

Getting started with linear algebra

The goal of this series is to provide content for beginners who want to understand enough linear algebra to be confortable with machine learning and deep learning. However, I think that the chapter on linear algebra from the Deep Learning book is a bit tough for beginners. So I decided to produce code, examples and drawings on each part of this chapter in order to add steps that may not be obvious for beginners. I also think that you can convey as much information and knowledge through examples as through general definitions. The illustrations are a way to see the big picture of an idea. Finally, I think that coding is a great tool to experiment with these abstract mathematical notions. Along with pen and paper, it adds a layer of what you can try to push your understanding through new horizons.

Graphical representation is also very helpful to understand linear algebra. I tried to bind the concepts with plots (and code to produce it). The type of representation I liked most by doing this series is the fact that you can see any matrix as linear transformation of the space. In several chapters we will extend this idea and see how it can be useful to understand eigendecomposition, Singular Value Decomposition (SVD) or the Principal Components Analysis (PCA).

The use of Python/Numpy

In addition, I noticed that creating and reading examples is really helpful to understand the theory. It is why I built Python notebooks. The goal is two folds:

  1. To provide a starting point to use Python/Numpy to apply linear algebra concepts. And since the final goal is to use linear algebra concepts for data science, it seems natural to continuously go between theory and code. All you will need is a working Python installation with major mathematical librairies like Numpy/Scipy/Matplotlib.

  2. Give a more concrete vision of the underlying concepts. I found hugely useful to play and experiment with these notebooks in order to build my understanding of somewhat complicated theoretical concepts or notations. I hope that reading them will be as useful.

Syllabus

The syllabus follows exactly the Deep Learning Book so you can find more details if you can't understand one specific point while you are reading it. Here is a short description of the content:

  1. Scalars, Vectors, Matrices and Tensors

    An example of a scalar, a vector, a matrix and a tensor

    Difference between a scalar, a vector, a matrix and a tensor

    Light introduction to vectors, matrices, transpose and basic operations (addition of vectors of matrices). Introduces also Numpy functions and finally a word on broadcasting.

  2. Multiplying Matrices and Vectors

    An example of how to calculate the dot product

    The dot product explained

    This chapter is mainly on the dot product (vector and/or matrix multiplication). We will also see some of its properties. Then, we will see how to synthesize a system of linear equations using matrix notation. This is a major process for the following chapters.

  3. Identity and Inverse Matrices

    Example of an identity matrix

    An identity matrix

    We will see two important matrices: the identity matrix and the inverse matrix. We will see why they are important in linear algebra and how to use them with Numpy. Finally, we will see an example on how to solve a system of linear equations with the inverse matrix.

  4. Linear Dependence and Span

    Examples of systems of equations with 0, 1 and an infinite number of solutions

    A system of equations has no solution, 1 solution or an infinite number of solutions

    In this chapter we will continue to study systems of linear equations. We will see that such systems can't have more than one solution and less than an infinite number of solutions. We will see the intuition, the graphical representation and the proof behind this statement. Then we will go back to the matrix form of the system and consider what Gilbert Strang calls the row figure (we are looking at the rows, that is to say multiple equations) and the column figure (looking at the columns, that is to say the linear combination of the coefficients). We will also see what is linear combination. Finally, we will see examples of overdetermined and underdetermined systems of equations.

  5. Norms

    Representation of the squared L2 norm in 3 dimensions

    Shape of a squared L2 norm in 3 dimensions

    The norm of a vector is a function that takes a vector in input and outputs a positive value. It can be thought of as the length of the vector. It is for example used to evaluate the distance between the prediction of a model and the actual value. We will see different kinds of norms ($L^0$, $L^1$, $L^2$...) with examples.

  6. Special Kinds of Matrices and Vectors

    Example of a diagonal matrix and of a symmetric matrix

    A diagonal (left) and a symmetric matrix (right)

    We have seen in 2.3 some special matrices that are very interesting. We will see other types of vectors and matrices in this chapter. It is not a big chapter but it is important to understand the next ones.

  7. Eigendecomposition

    output_59_0

    We will see some major concepts of linear algebra in this chapter. We will start by getting some ideas on eigenvectors and eigenvalues. We will see that a matrix can be seen as a linear transformation and that applying a matrix on its eigenvectors gives new vectors with same direction. Then we will see how to express quadratic equations in a matrix form. We will see that the eigendecomposition of the matrix corresponding to the quadratic equation can be used to find its minimum and maximum. As a bonus, we will also see how to visualize linear transformation in Python!

  8. Singular Value Decomposition

    output_35_7

    We will see another way to decompose matrices: the Singular Value Decomposition or SVD. Since the beginning of this series I emphasized the fact that you can see matrices as linear transformation in space. With the SVD, you decompose a matrix in three other matrices. We will see that we look at these new matrices as sub-transformation of the space. Instead of doing the transformation in one movement, we decompose it in three movements. As a bonus, we will apply the SVD to image processing. We will see the effect of SVD on an example image of Lucy the goose. So keep on reading!

  9. The Moore-Penrose Pseudoinverse

    output_44_0

    We saw that not all matrices have an inverse. It is unfortunate because the inverse is used to solve system of equations. In some cases, a system of equations has no solution, and thus the inverse doesn’t exist. However it can be useful to find a value that is almost a solution (in terms of minimizing the error). This can be done with the pseudoinverse! We will see for instance how we can find the best-fit line of a set of data points with the pseudoinverse.

  10. The Trace Operator

    Calculating the trace of a matrix

    The trace of matrix

    We will see what is the Trace of a matrix. It will be needed for the last chapter on the Principal Component Analysis (PCA).

  11. The Determinant

    Comparison of positive and negative determinant

    Link between the determinant of a matrix and the transformation associated with it

    This chapter is about the determinant of a matrix. This special number can tell us a lot of things about our matrix!

  12. Example: Principal Components Analysis

    Mechanism of the gradient descent algorithm **Gradient descent**

    This is the last chapter of this series on linear algebra! It is about Principal Components Analysis (PCA). We will use some knowledge that we acquired along the preceding chapters to understand this important data analysis tool!

Requirements

This content is aimed at beginners but it would be nice to have at least some experience with mathematics.

Enjoy

I hope that you will find something interesting in this series. I tried to be as accurate as I could. If you find errors/misunderstandings/typos… Please report it! You can send me emails or open issues and pull request in the notebooks Github.

References

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.

Owner
hadrienj
Data and Machine Learning - Freelance. Previously Machine Learning Scientist at Ava. Previously PhD Student at Ecole Normal Supérieure.
hadrienj
Fully coded Apps by Codex.

OpenAI-Codex-Code-Generation Fully coded Apps by Codex. How I use Codex in VSCode to generate multiple completions with autosorting by highest "mean p

nanowell 47 Jan 01, 2023
A python module for DeSo

DeSo.py A python package for DeSo. Developed by ItsAditya Run pip install deso to install the module! Examples of How To Use DeSo.py Getting $DeSo pri

ItsAditya 0 Jun 30, 2022
WordlistPasswordGenerator - Shuhfab Basheer

WordlistPasswordGenerator - Shuhfab Basheer Python wordlist generator MAINTAINER

1 Dec 31, 2021
Create an application to visualize single/multiple Xandar Kardian people counting sensors detection result for a indoor area.

Program Design Purpose: We want to create an application to visualize single/multiple Xandar Kardian people counting sensors detection result for a indoor area.

2 Dec 28, 2022
Free components that wrap up Python into Delphi and Lazarus (FPC)

Python for Delphi (P4D) is a set of free components that wrap up the Python DLL into Delphi and Lazarus (FPC). They let you easily execute Python scri

747 Jan 02, 2023
Nextstrain build targeted to Omicron

About This repository analyzes viral genomes using Nextstrain to understand how SARS-CoV-2, the virus that is responsible for the COVID-19 pandemic, e

Bedford Lab 9 May 25, 2022
Holographic Declarative Memory for Python ACT-R

HDM This is the repository for the Holographic Declarative Memory (HDM) module for Python ACT-R. This repository contains: documentation: a paper, con

Carleton Cognitive Modeling Lab 1 Jan 17, 2022
A working roblox account generator it doesnt bypass the capcha stuff cuz these didnt showed up in my test runs

A working roblox account generator (state 11.5.2021) it doesnt bypass the capcha stuff cuz these didnt showed up in my test runs

TerrificTable 22 Jan 03, 2023
This Open-Source project is great for sensor capture and storage solutions.

Phase 1 This project helps developers in the creation of extended realities that communicate with Arduino and require the security of blockchain stora

Wolfberry, LLC 10 Dec 28, 2022
Bring A Trailer(BAT) is a popular online auction website for enthusiast cars. This traverse auction results and saves them as CSV

BaT Data Grabber Bring A Trailer(BAT) is a popular online auction website for enthusiast cars. This traverse auction results and saves them as CSV Bri

Elliot Weil 2 Oct 31, 2021
Change your Windows background with this program safely & easily!

Background_Changer Table of Contents: About the Program Features Requirements Preview Credits Reach Me See Also About the Program: You can change your

Sina.f 0 Jul 14, 2022
This is a multi-app executor that it used when we have some different task in a our applications and want to run them at the same time

This is a multi-app executor that it used when we have some different task in a our applications and want to run them at the same time. It uses SQLAlchemy for ORM and Alembic for database migrations.

Majid Iranpour 5 Apr 16, 2022
jmespath.rs Python binding

rjmespath-py jmespath.rs Python binding.

messense 3 Dec 14, 2022
A basic interpreted programming language written in python

shin A basic interpreted programming language written in python. extension You can use our own extension ".shin". Example: main.shin How to start Clon

12 Nov 04, 2022
A class to draw curves expressed as L-System production rules

A class to draw curves expressed as L-System production rules

Juna Salviati 6 Sep 09, 2022
Reproduce digital electronics in Python

Pylectronics Reproduce digital electronics in Python Report Bug · Request Feature Table of Contents About The Project Getting Started Prerequisites In

Filipe Garcia 45 Dec 20, 2021
Your self-hosted bookmark archive. Free and open source.

Your self-hosted bookmark archive. Free and open source. Contents About LinkAce Support Setup Contribution About LinkAce LinkAce is a self-hosted arch

Kevin Woblick 1.7k Jan 03, 2023
Demo of patching a python context manager

patch-demo-20211203 demo of patching a python context manager poetry install poetry run python -m my_great_app to run the code poetry run pytest to te

Brad Smith 1 Feb 09, 2022
Your one and only Discord Bot that helps you concentrate!

Your one and only Discord Bot thats helps you concentrate! Consider leaving a ⭐ if you found the project helpful. concy-bot A bot which constructively

IEEE VIT Student Chapter 22 Sep 27, 2022
Simple script to match riders with drivers.

theBestPooler Simple script to match riders with drivers. It's a greedy, unoptimised search, so no guarantees that it works. It just seems to work (ve

Devansh 1 Nov 22, 2021