Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)

Related tags

Text Data & NLPTOPSIS
Overview

TOPSIS implementation in Python

Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) CHING-LAI Hwang and Yoon introduced TOPSIS in 1981 in their Multiple Criteria Decision Making (MCDM) and Multiple Criteria Decision Analysis (MCDA) methods [1]. TOPSIS strives to minimize the distance between the positive ideal solution and the chosen alternative, as well as to maximize the distance between the negative ideal solution and the chosen alternative. [2]. TOPSIS, in a nutshell, aids researchers to rank alternative items by identifying some criteria. We present alternative information and the criteria for each in the following decision matrix: image It is possible that some criteria are more effective than others. Therefore, some weights are given to their importance. It is required that the summation of n weights equals one.

image

Jahanshahloo et al, (2006), explained the TOPSIS in six main phases as follows:

1) Normalized Decision Matrix

It is the first phase of TOPSIS to normalize the process. Researchers have proposed different types of normalization. In this section, we identify the most commonly used normalization methods. The criterion or attribute is divided into two categories, cost and benefit. There are two formulas for normalizing the decision matrix for each normalization method: one for benefit criteria and one for cost criteria. According to Vafaei et al (2018), some of these normalization methods include:

image

All of the above normalization methods were coded in Normalization.py. Also, there is another related file called Normalized_Decision_Matrix.py, implementing the normalization method on the decision matrix. Now we have anormalized decision matrix as follows:

image

2) Weighted Normalized Decision Matrix

The Weighted Normalized Decision Matrix is calculated by multiplying the normalized decision matrix by the weights.

image

This multiplication is performed in the Weighted_Normalized_Decision_Matrix.py file. Now, we have a weighted normalized decision matrix as follows:

image

3) Ideal Solutions

As was mentioned, TOPSIS strives to minimize the distance between the positive ideal solution and the chosen alternative, as well as to maximize the distance between the negative ideal solution and the chosen alternative. But what are the positive and negative ideal solutions?

If our attribute or criterion is profit-based, positive ideal solution (PIS) and negative ideal solution (NIS) are:

image

If our attribute or criterion is cost-based, positive ideal solution (PIS) and negative ideal solution (NIS) are:

image

In our code, ideal solutions are calculated in Ideal_Solution.py.

  1. Separation measures It is necessary to introduce a measure that can measure how far alternatives are from the ideal solutions. Our measure comprise two main sections: The separation of each alternative from the PIS is calculated as follows:

image

Also, the separation of each alternative from the NIS is calculated as follows:

image

  1. Closeness to the Ideal Solution Now that the distance between ideal solutions and alternatives has been calculated, we rank our alternatives according to how close they are to ideal solutions. The distance measure is calculated by the following formula:

image

It is clear that :

image

6) Ranking

Now, alternatives are ranked in decreasing order based on closeness to the ideal solution. Both of (5) and (6) are calculated in Distance_Between_Ideal_and_Alternatives.py.

7) TOPSIS

In this section, all of the previous .py files are employed and utilized in an integrated way.

References

  1. Hwang, C.L.; Yoon, K. (1981). Multiple Attribute Decision Making: Methods and Applications. New York: Springer-Verlag.: https://www.springer.com/gp/book/9783540105589
  2. Assari, A., Mahesh, T., & Assari, E. (2012b). Role of public participation in sustainability of historical city: usage of TOPSIS method. Indian Journal of Science and Technology, 5(3), 2289-2294.
  3. Jahanshahloo, G.R., Lotfi, F.H. and Izadikhah, M., 2006. An algorithmic method to extend TOPSIS for decision-making problems with interval data. Applied mathematics and computation, 175(2), pp.1375-1384.
  4. Vafaei, N., Ribeiro, R.A. and Camarinha-Matos, L.M., 2018. Data normalization techniques in decision making: case study with TOPSIS method. International journal of information and decision sciences, 10(1), pp.19-38.
Owner
Hamed Baziyad
Hamed Baziyad
This is a simple item2vec implementation using gensim for recbole

recbole-item2vec-model This is a simple item2vec implementation using gensim for recbole( https://recbole.io ) Usage When you want to run experiment f

Yusuke Fukasawa 2 Oct 06, 2022
A look-ahead multi-entity Transformer for modeling coordinated agents.

baller2vec++ This is the repository for the paper: Michael A. Alcorn and Anh Nguyen. baller2vec++: A Look-Ahead Multi-Entity Transformer For Modeling

Michael A. Alcorn 30 Dec 16, 2022
Get list of common stop words in various languages in Python

Python Stop Words Table of contents Overview Available languages Installation Basic usage Python compatibility Overview Get list of common stop words

Alireza Savand 142 Dec 21, 2022
Ελληνικά νέα (Python script) / Greek News Feed (Python script)

Ελληνικά νέα (Python script) / Greek News Feed (Python script) Ελληνικά English Το 2017 είχα υλοποιήσει ένα Python script για να εμφανίζει τα τωρινά ν

Loren Kociko 1 Jun 14, 2022
GooAQ 🥑 : Google Answers to Google Questions!

This repository contains the code/data accompanying our recent work on long-form question answering.

AI2 112 Nov 06, 2022
PyJPBoatRace: Python-based Japanese boatrace tools 🚤

pyjpboatrace :speedboat: provides you with useful tools for data analysis and auto-betting for boatrace.

5 Oct 29, 2022
1 Jun 28, 2022
A python script that will use hydra to get user and password to login to ssh, ftp, and telnet

Hydra-Auto-Hack A python script that will use hydra to get user and password to login to ssh, ftp, and telnet Project Description This python script w

2 Jan 16, 2022
CrossNER: Evaluating Cross-Domain Named Entity Recognition (AAAI-2021)

CrossNER is a fully-labeled collected of named entity recognition (NER) data spanning over five diverse domains (Politics, Natural Science, Music, Literature, and Artificial Intelligence) with specia

Zihan Liu 89 Nov 10, 2022
A 10000+ hours dataset for Chinese speech recognition

A 10000+ hours dataset for Chinese speech recognition

309 Dec 16, 2022
Sploitus - Command line search tool for sploitus.com. Think searchsploit, but with more POCs

Sploitus Command line search tool for sploitus.com. Think searchsploit, but with

watchdog2000 5 Mar 07, 2022
Yes it's true :broken_heart:

Information WARNING: No longer hosted If you would like to be on this repo's readme simply fork or star it! Forks 1 - Flowzii 2 - Errorcrafter 3 - vk-

Dropout 66 Dec 31, 2022
Python interface for converting Penn Treebank trees to Stanford Dependencies and Universal Depenencies

PyStanfordDependencies Python interface for converting Penn Treebank trees to Universal Dependencies and Stanford Dependencies. Example usage Start by

David McClosky 64 May 08, 2022
Code for CVPR 2021 paper: Revamping Cross-Modal Recipe Retrieval with Hierarchical Transformers and Self-supervised Learning

Revamping Cross-Modal Recipe Retrieval with Hierarchical Transformers and Self-supervised Learning This is the PyTorch companion code for the paper: A

Amazon 69 Jan 03, 2023
Linear programming solver for paper-reviewer matching and mind-matching

Paper-Reviewer Matcher A python package for paper-reviewer matching algorithm based on topic modeling and linear programming. The algorithm is impleme

Titipat Achakulvisut 66 Jul 05, 2022
PyTorch implementation of NATSpeech: A Non-Autoregressive Text-to-Speech Framework

A Non-Autoregressive Text-to-Speech (NAR-TTS) framework, including official PyTorch implementation of PortaSpeech (NeurIPS 2021) and DiffSpeech (AAAI 2022)

760 Jan 03, 2023
Official source for spanish Language Models and resources made @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).

Spanish Language Models 💃🏻 Corpora 📃 Corpora Number of documents Size (GB) BNE 201,080,084 570GB Models 🤖 RoBERTa-base BNE: https://huggingface.co

PlanTL-SANIDAD 203 Dec 20, 2022
Reproducing the Linear Multihead Attention introduced in Linformer paper (Linformer: Self-Attention with Linear Complexity)

Linear Multihead Attention (Linformer) PyTorch Implementation of reproducing the Linear Multihead Attention introduced in Linformer paper (Linformer:

Kui Xu 58 Dec 23, 2022
Pretrained language model and its related optimization techniques developed by Huawei Noah's Ark Lab.

Pretrained Language Model This repository provides the latest pretrained language models and its related optimization techniques developed by Huawei N

HUAWEI Noah's Ark Lab 2.6k Jan 08, 2023
Gold standard corpus annotated with verb-preverb connections for Hungarian.

Hungarian Preverb Corpus A gold standard corpus manually annotated with verb-preverb connections for Hungarian. corpus The corpus consist of the follo

RIL Lexical Knowledge Representation Research Group 3 Jan 27, 2022