Ludwig Benchmarking Toolkit

Overview

Ludwig Benchmarking Toolkit

The Ludwig Benchmarking Toolkit is a personalized benchmarking toolkit for running end-to-end benchmark studies across an extensible set of tasks, deep learning models, standard datasets and evaluation metrics.

Getting set-up

To get started, use the following commands to set-up your conda environment.

git clone https://github.com/HazyResearch/ludwig-benchmarking-toolkit.git
cd ludwig-benchmarking-toolkit
conda env create -f environments/{environment-osx.yaml, environment-linux.yaml}
conda activate lbt

Relevant files and directories

experiment-templates/task_template.yaml: Every task (i.e. text classification) will have its owns task template. The template specifies the model architecture (encoder and decoder structure), training parameters, and a hyperopt configuration for the task at hand. A large majority of the values of the template will be populated by the values in the hyperopt_config.yaml file and dataset_metadata.yaml at training time. The sample task template located in experiment-templates/task_template.yaml is for text classification. See sample-task-templates/ for other examples.

experiment-templates/hyperopt_config.yaml: provides a range of values for training parameters and hyperopt params that will populate the hyperopt configuration in the model template

experiment-templates/dataset_metadata.yaml: contains list of all available datasets (and associated metadata) that the hyperparameter optimization can be performed over.

model-configs/: contains all encoder specific yaml files. Each files specifies possible values for relevant encoder parameters that will be optimized over. Each file in this directory adheres to the naming convention {encoder_name}_hyperopt.yaml

hyperopt-experiment-configs/: houses all experiment configs built from the templates specified above (note: this folder will be populated at run-time) and will be used when the hyperopt experiment is called. At a high level, each config file specifies the training and hyperopt information for a (task, dataset, architecture) combination. An example might be (text classification, SST2, BERT)

elasticsearch_config.yaml : this is an optional file that is to be defined if an experiment data will be saved to an elastic database.

USAGE

Command-Line Usage

Running your first TOY experiment:

For testing/setup purposes we have included a toy dataset called toy_agnews. This dataset contains a small set of training, test and validation samples from the original agnews dataset.

Before running a full-scale experiment, we recommend running an experiment locally on the toy dataset:

python experiment_driver.py --run_environment local --datasets toy_agnews --custom_models_list rnn

Running your first REAL experiment:

Steps for configuring + running an experiment:

  1. Declare and configure the search space of all non-model specific training and preprocessing hyperparameters in the experiment-templates/hyperopt_config.yaml file. The parameters specified in this file will be used across all model experiments.

  2. Declare and configure the search space of model specific hyperparameters in the {encoder}_hyperopt.yaml files in ./model_configs

    NOTE:

    • for both (1) and (2) see the Ludwig Hyperparamter Optimization guide to see what parameters for training, preprocessing, and input/ouput features can be used in the hyperopt search
    • if the exectuor type is Ray the list of available search spaces and input format differs slightly than the built-in ludwig types. Please see the Ray Tune search space docs for more information.
  3. Run the following command specifying the datasets, encoders, path to elastic DB index config file, run environment and more:

        python experiment_driver.py \
            --experiment_output_dir  
         
          
            --run_environment {local, gcp}
            --elasticsearch_config 
          
           
            --dataset_cache_dir 
           
            
            --custom_model_list 
            
             
            --datasets 
             
               --resume_existing_exp bool 
             
            
           
          
         

NOTE: Please use python experiment_driver.py -h to see list of available datasets, encoders and args

API Usage

It is also possible to run, customize and experiments using LBTs APIs. In the following section, we describe the three flavors of APIs included in LBT.

experiment API

This API provides an alternative method for running experiments. Note that runnin experiments via the API still requires populating the aforemented configuration files

from lbt.experiments import experiment

experiment(
    models = ['rnn', 'bert'],
    datasets = ['agnews'],
    run_environment = "local",
    elastic_search_config = None,
    resume_existing_exp = False,
)

tools API

This API provides access to two tooling integrations (TextAttack and Robustness Gym (RG)). The TextAttack API can be used to generate adversarial attacks. Moreover, users can use the TextAttack interface to augment data files. The RG API which empowers users to inspect model performance on a set of generic, pre-built slices and to add more slices for their specific datasets and use cases.

from lbt.tools.robustnessgym import RG 
from lbt.tools.textattack import attack, augment

# Robustness Gym API Usage
RG( dataset_name="AGNews",
    models=["bert", "rnn"],
    path_to_dataset="agnews.csv", 
    subpopulations=[ "entities", "positive_words", "negative_words"]))

# TextAttack API Usage
attack(dataset_name="AGNews", path_to_model="agnews/model/rnn_model",
    path_to_dataset="agnews.csv", attack_recipe=["CharSwapAugmenter"])

augment(dataset_name="AGNews", transformations_per_example=1
   path_to_dataset="agnews.csv", augmenter=["WordNetAugmenter"])

visualizations API

This API provides out-of-the-box support for visualizations for learning behavior, model performance, and hyperparameter optimization using the training and evaluation statistics generated during model training

import lbt.visualizations

# compare model performance
compare_performance_viz(
    dataset_name="toy_agnews",
    model_name="rnn",
    output_feature_name="class_index",
)

# compare training and validation trajectory
learning_curves_viz(
    dataset_name="toy_agnews",
    model_name="rnn",
    output_feature_name="class_index",
)

# visualize hyperoptimzation search
hyperopt_viz(
    dataset_name="toy_agnews",
    model_name="rnn",
    output_dir="."
)

EXPERIMENT EXTENSIBILITY

Adding new custom datasets

Adding custom dataset requires creating a new LBTDataset class and adding it to the dataset registry. Creating an LBTDataset object requires implementing three class methods: download, process and load. Please see the the ToyAGNews dataset as an example.

Adding new metrics

Adding custom evaluation metrics requires creating a new LBTMetric class and adding it to the metrics registry. Creating an LBTMetric object requires implementing the run class method which takes as potential inputs a path to a model directory, path to a dataset, training batch size, and training statistics. Please see the pre-built LBT metrics for examples.

ELASTICSEARCH RESEARCH DATABASE

To get credentials to upload experiments to the shared Elasticsearch research database, please fill out this form.

Owner
HazyResearch
We are a CS research group led by Prof. Chris Ré.
HazyResearch
Improving the robustness and performance of biomedical NLP models through adversarial training

RobustBioNLP Improving the robustness and performance of biomedical NLP models through adversarial training In this repository you can find suppliment

Milad Moradi 3 Sep 20, 2022
Benchmark for evaluating open-ended generation

OpenMEVA Contributed by Jian Guan, Zhexin Zhang. Thank Jiaxin Wen for DeBugging. OpenMEVA is a benchmark for evaluating open-ended story generation me

25 Nov 15, 2022
Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder

ASEGAN: Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder 中文版简介 Readme with English Version 介绍 基于SEGAN模型的改进版本,使用自主设计的非

Nitin 53 Nov 17, 2022
Code for CVPR2021 "Visualizing Adapted Knowledge in Domain Transfer". Visualization for domain adaptation. #explainable-ai

Visualizing Adapted Knowledge in Domain Transfer @inproceedings{hou2021visualizing, title={Visualizing Adapted Knowledge in Domain Transfer}, auth

Yunzhong Hou 80 Dec 25, 2022
Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation.

Unified-EPT Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation. Installation Linux, CUDA=10.0,

29 Aug 23, 2022
An implementation of MobileFormer

MobileFormer An implementation of MobileFormer proposed by Yinpeng Chen, Xiyang Dai et al. Including [1] Mobile-Former proposed in:

slwang9353 62 Dec 28, 2022
A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis

WaveGlow A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis Quick Start: Install requirements: pip install

Yuchao Zhang 204 Jul 14, 2022
GRF: Learning a General Radiance Field for 3D Representation and Rendering

GRF: Learning a General Radiance Field for 3D Representation and Rendering [Paper] [Video] GRF: Learning a General Radiance Field for 3D Representatio

Alex Trevithick 243 Dec 29, 2022
A modular application for performing anomaly detection in networks

Deep-Learning-Models-for-Network-Annomaly-Detection The modular app consists for mainly three annomaly detection algorithms. The system supports model

Shivam Patel 1 Dec 09, 2021
Training Very Deep Neural Networks Without Skip-Connections

DiracNets v2 update (January 2018): The code was updated for DiracNets-v2 in which we removed NCReLU by adding per-channel a and b multipliers without

Sergey Zagoruyko 585 Oct 12, 2022
This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Koltun"

Learning to propose objects This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Ko

Philipp Krähenbühl 90 Sep 10, 2021
A state of the art of new lightweight YOLO model implemented by TensorFlow 2.

CSL-YOLO: A New Lightweight Object Detection System for Edge Computing This project provides a SOTA level lightweight YOLO called "Cross-Stage Lightwe

Miles Zhang 54 Dec 21, 2022
CenterFace(size of 7.3MB) is a practical anchor-free face detection and alignment method for edge devices.

CenterFace Introduce CenterFace(size of 7.3MB) is a practical anchor-free face detection and alignment method for edge devices. Recent Update 2019.09.

StarClouds 1.2k Dec 21, 2022
This repository allows the user to automatically scale a 3D model/mesh/point cloud on Agisoft Metashape

Metashape-Utils This repository allows the user to automatically scale a 3D model/mesh/point cloud on Agisoft Metashape, given a set of 2D coordinates

INSCRIBE 4 Nov 07, 2022
This is the official implementation for the paper "Heterogeneous Multi-player Multi-armed Bandits: Closing the Gap and Generalization" in NeurIPS 2021.

MPMAB_BEACON This is code used for the paper "Decentralized Multi-player Multi-armed Bandits: Beyond Linear Reward Functions", Neurips 2021. Requireme

Cong Shen Research Group 0 Oct 26, 2021
Computer Vision Script to recognize first person motion, developed as final project for the course "Machine Learning and Deep Learning"

Overview of The Code BaseColab/MLDL_FPAR.pdf: it contains the full explanation of our work Base Colab: it contains the base colab used to perform all

Simone Papicchio 4 Jul 16, 2022
PyTorch code for Vision Transformers training with the Self-Supervised learning method DINO

Self-Supervised Vision Transformers with DINO PyTorch implementation and pretrained models for DINO. For details, see Emerging Properties in Self-Supe

Facebook Research 4.2k Jan 03, 2023
Official PyTorch implementation of "Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning" (ICCV2021 Oral)

MeTAL - Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning (ICCV2021 Oral) Sungyong Baik, Janghoon Choi, Heewon Kim, Dohee Cho, Jaes

Sungyong Baik 44 Dec 29, 2022
SLAMP: Stochastic Latent Appearance and Motion Prediction

SLAMP: Stochastic Latent Appearance and Motion Prediction Official implementation of the paper SLAMP: Stochastic Latent Appearance and Motion Predicti

Kaan Akan 34 Dec 08, 2022
This is an unofficial implementation of the paper “Student-Teacher Feature Pyramid Matching for Unsupervised Anomaly Detection”.

This is an unofficial implementation of the paper “Student-Teacher Feature Pyramid Matching for Unsupervised Anomaly Detection”.

haifeng xia 32 Oct 26, 2022