Official Code for "Non-deep Networks"

Overview

Non-deep Networks
arXiv:2110.07641
Ankit Goyal, Alexey Bochkovskiy, Jia Deng, Vladlen Koltun

Overview: Depth is the hallmark of DNNs. But more depth means more sequential computation and higher latency. This begs the question -- is it possible to build high-performing ``non-deep" neural networks? We show that it is. We show, for the first time, that a network with a depth of just 12 can achieve top-1 accuracy over 80% on ImageNet, 96% on CIFAR10, and 81% on CIFAR100. We also show that a network with a low-depth (12) backbone can achieve an AP of 48% on MS-COCO.

If you find our work useful, please consider citing it:

@article{goyal2021nondeep,
  title={Non-deep Networks},
  author={Goyal, Ankit and Bochkovskiy, Alexey and Deng, Jia and Koltun, Vladlen},
  journal={arXiv:2110.07641},
  year={2021}
}

Code Coming Soon!

Comments
  • when will the code of the model be released?

    when will the code of the model be released?

    I am very interested in your research, when will the code of the model be released? I saw on October 23rd that you said it would be released in 4 weeks

    opened by Dr-Goopher 6
  • When will the code be released?

    When will the code be released?

    I am very interested in your work and would like to further study. I hope you can release the code as soon as possible in your busy schedule. Thank you!

    opened by SenShu96 5
  • what is the meaning of 'Shuffle' of fusion block in Fig. A1?

    what is the meaning of 'Shuffle' of fusion block in Fig. A1?

    Hello. Thank you for your great study. I wonder the meaning of 'Shuffle' of fusion block in Fig. A1. Is it pixel shuffle layer? Please let me know the meaning of that.

    Thank you.

    opened by jhcha08 3
  • Question about SSE module

    Question about SSE module

    Hi. Figure 2b shows that there's one 1x1conv in a branch of SSE, how to match the channel of output by 1x1conv with the channel of input after shortcut? If I set the output channel of 1x1conv the same as input, the channels of the outputs by RepVGG block and SSE will not match.

    opened by Tsianmy 2
  • Really faster than ResNet? I am very confused

    Really faster than ResNet? I am very confused

    Hello, my friend, appreciate for your great work! I have tested the code on https://github.com/Pritam-N/ParNet by Pritam-N and change the ResNet code in my model by using your ParNet , but the actual time is quite slow than the paper said. My block size is [64, 128, 256, 512, 2048], and the time of "forward()" is more than 5s average while the Resnet is 0.02s in my device. I have use the time function for every line in the forward(), find that the encode stuff is the main reason. I continue write time.perf_counter() in the encode stuff, find that the "self.stream2_fusion" and "self.stream3_fusion" is the most time user. Do you know why ?

    opened by StonepageVan 1
  •  fusion module, accuracy about cifar100

    fusion module, accuracy about cifar100

    1. what is your shuffle code in your fusion module?
    2. what is your model architecture in cifar-100? I just changed front two downsample modules based on the ParNet for Imagenet in the paper. But the accuracy is lower. And How do you set the LR, MILESTONES and NUM_EPOCH to meet high accuracy?
    opened by qq769852576 2
Owner
Ankit Goyal
Phd Candidate @Princeton | Works in CV and AI
Ankit Goyal
ML From Scratch

ML from Scratch MACHINE LEARNING TOPICS COVERED - FROM SCRATCH Linear Regression Logistic Regression K Means Clustering K Nearest Neighbours Decision

Tanishq Gautam 66 Nov 02, 2022
Code for the paper "Controllable Video Captioning with an Exemplar Sentence"

SMCG Code for the paper "Controllable Video Captioning with an Exemplar Sentence" Introduction We investigate a novel and challenging task, namely con

10 Dec 04, 2022
The code for paper "Contrastive Spatio-Temporal Pretext Learning for Self-supervised Video Representation" which is accepted by AAAI 2022

Contrastive Spatio Temporal Pretext Learning for Self-supervised Video Representation (AAAI 2022) The code for paper "Contrastive Spatio-Temporal Pret

8 Jun 30, 2022
Random-Afg - Afghanistan Random Old Idz Cloner Tools

AFGHANISTAN RANDOM OLD IDZ CLONER TOOLS Install $ apt update $ apt upgrade $ apt

MAHADI HASAN AFRIDI 5 Jan 26, 2022
Tensorflow implementation for Self-supervised Graph Learning for Recommendation

If the compilation is successful, the evaluator of cpp implementation will be called automatically. Otherwise, the evaluator of python implementation will be called.

152 Jan 07, 2023
Help you understand Manual and w/ Clutch point while driving.

简体中文 forza_auto_gear forza_auto_gear is a tool for Forza Horizon 5. It will help us understand the best gear shift point using Manual or w/ Clutch in

15 Oct 08, 2022
An Inverse Kinematics library aiming performance and modularity

IKPy Demo Live demos of what IKPy can do (click on the image below to see the video): Also, a presentation of IKPy: Presentation. Features With IKPy,

Pierre Manceron 481 Jan 02, 2023
Node Dependent Local Smoothing for Scalable Graph Learning

Node Dependent Local Smoothing for Scalable Graph Learning Requirements Environments: Xeon Gold 5120 (CPU), 384GB(RAM), TITAN RTX (GPU), Ubuntu 16.04

Wentao Zhang 15 Nov 28, 2022
Fully Adaptive Bayesian Algorithm for Data Analysis (FABADA) is a new approach of noise reduction methods. In this repository is shown the package developed for this new method based on \citepaper.

Fully Adaptive Bayesian Algorithm for Data Analysis FABADA FABADA is a novel non-parametric noise reduction technique which arise from the point of vi

18 Oct 20, 2022
converts nominal survey data into a numerical value based on a dictionary lookup.

SWAP RATE Converts nominal survey data into a numerical values based on a dictionary lookup. It allows the user to switch nominal scale data from text

Jake Rhodes 1 Jan 18, 2022
DualGAN-tensorflow: tensorflow implementation of DualGAN

ICCV paper of DualGAN DualGAN: unsupervised dual learning for image-to-image translation please cite the paper, if the codes has been used for your re

Jack Yi 252 Nov 10, 2022
retweet 4 satoshi ⚡️

rt4sat retweet 4 satoshi This bot is the codebase for https://twitter.com/rt4sat please feel free to create an issue if you saw any bugs basically thi

6 Sep 30, 2022
ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge (ManiSkill Challenge), a large-scale learning-from-demonstrations benchmark for object manipulation.

ManiSkill-Learn ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge, a large-scale learning-from-dem

Hao Su's Lab, UCSD 48 Dec 30, 2022
This repository contains source code for the Situated Interactive Language Grounding (SILG) benchmark

SILG This repository contains source code for the Situated Interactive Language Grounding (SILG) benchmark. If you find this work helpful, please cons

Victor Zhong 17 Nov 27, 2022
Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators..

ARAPReg Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators.. Installation The cod

Bo Sun 132 Nov 28, 2022
Pytorch implementation of BRECQ, ICLR 2021

BRECQ Pytorch implementation of BRECQ, ICLR 2021 @inproceedings{ li&gong2021brecq, title={BRECQ: Pushing the Limit of Post-Training Quantization by Bl

Yuhang Li 148 Dec 28, 2022
Justmagic - Use a function as a method with this mystic script, like in Nim

justmagic Use a function as a method with this mystic script, like in Nim. Just

witer33 8 Oct 08, 2022
Covid19-Forecasting - An interactive website that tracks, models and predicts COVID-19 Cases

Covid-Tracker This is an interactive website that tracks, models and predicts CO

Adam Lahmadi 1 Feb 01, 2022
STEAL - Learning Semantic Boundaries from Noisy Annotations (CVPR 2019)

STEAL This is the official inference code for: Devil Is in the Edges: Learning Semantic Boundaries from Noisy Annotations David Acuna, Amlan Kar, Sanj

469 Dec 26, 2022
Inhomogeneous Social Recommendation with Hypergraph Convolutional Networks

Inhomogeneous Social Recommendation with Hypergraph Convolutional Networks This is our Pytorch implementation for the paper: Zirui Zhu, Chen Gao, Xu C

Zirui Zhu 3 Dec 30, 2022