No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consistency

Related tags

Deep LearningTReS
Overview



wacv2021

Creat Environment

This code is train and test on Ubuntu 16.04 while using Anaconda, python 3.6.6, and pytorch 1.8.0. To set up the evironment run: conda env create -f environment.yml after installing the virtuall env you should be able to run python -c "import torch; print(torch.__version__)" in the terminal and see 1.8.0

Datasets

In this work we use 7 datasets for evaluation (LIVE, CSIQ, TID2013, KADID10K, CLIVE, KonIQ, LIVEFB)

To start training please make sure to follow the correct folder structure for each of the aformentioned datasets as provided bellow:

LIVE
live
    |--fastfading
    |    |  ...     
    |--blur
    |    |  ... 
    |--jp2k
    |    |  ...     
    |--jpeg
    |    |  ...     
    |--wn
    |    |  ...     
    |--refimgs
    |    |  ...     
    |--dmos.mat
    |--dmos_realigned.mat
    |--refnames_all.mat
    |--readme.txt
CSIQ
csiq
    |--dst_imgs_all
    |    |--1600.AWGN.1.png
    |    |  ... (you need to put all the distorted images here)
    |--src_imgs
    |    |--1600.png
    |    |  ...
    |--csiq.DMOS.xlsx
    |--csiq_label.txt
TID2013
tid2013
    |--distorted_images
    |--reference_images
    |--mos.txt
    |--mos_std.txt
    |--mos_with_names.txt
    |--readme
KADID10K
kadid10k
    |--distorted_images
    |    |--I01_01_01.png
    |    |  ...    
    |--reference_images
    |    |--I01.png
    |    |  ...    
    |--dmos.csv
    |--mv.sh.save
    |--mvv.sh
CLIVE
clive
    |--Data
    |    |--I01_01_01.png
    |    |  ...    
    |--Images
    |    |--I01.png
    |    |  ...    
    |--ChallengeDB_release
    |    |--README.txt
    |--dmos.csv
    |--mv.sh.save
    |--mvv.sh
KonIQ
fblive
   |--1024x768
   |    |  992920521.jpg 
   |    |  ... (all the images should be here)     
   |--koniq10k_scores_and_distributions.csv
LIVEFB
fblive
   |--FLIVE
   |    |  AVA__149.jpg    
   |    |  ... (all the images should be here)     
   |--labels_image.csv

Training

The training scrips are provided in the run.sh. Please change the paths correspondingly. Please note that to achive the same performace the parameters should match the ones in the run.sh files.

Pretrained models

The pretrain models are provided here.

Acknowledgement

This code is borrowed parts from HyperIQA and DETR.

FAQs

- What is the difference between self-consistency and ensembling? and will the self-consistency increase the interface time? In ensampling methods, we need to have several models (with different initializations) and ensemble the results during the training and testing, but in our self-consistency model, we enforce one model to have consistent performance for one network during the training while the network has an input with different transformations. Our self-consistency model has the same interface time/parameters in the testing similar to the model without self-consistency. In other words, we are not adding any new parameters to the network and it won't affect the interface.
- What is the difference between self-consistency and augmentation? In augmentation, we augment an input and send it to one network, so although the network will become robust to different augmentation, it will never have the chance of enforcing the outputs to be the same for different versions of an input at the same time. In our self-consistency approach, we force the network to have a similar output for an image with a different transformation (in our case horizontal flipping) which leads to more robust performance. Please also note that we still use augmentation during the training, so our model is benefiting from the advantages of both augmentation and self-consistency. Also, please see Fig. 1 in the main paper, where we showed that models that used augmentation alone are sensitive to simple transformations.
- Why does the relative ranking loss apply to the samples with the highest and lowest quality scores, why not applying it to all the samples? 1) We did not see a significant improvement by applying our ranking loss to all the samples within each batch compared to the case that we just use extreme cases. 2) Considering more samples lead to more gradient back-propagation and therefore more computation during the training which causes slower training.

Citation

If you find this work useful for your research, please cite our paper:

@InProceedings{golestaneh2021no,
  title={No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consistency},
  author={Golestaneh, S Alireza and Dadsetan, Saba and Kitani, Kris M},
  booktitle={Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision},
  pages={3209--3218},
  year={2022}
}

If you have any questions about our work, please do not hesitate to contact [email protected]

Owner
Alireza Golestaneh
Alireza Golestaneh
Türkiye Canlı Mobese Görüntülerinde Profesyonel Nesne Takip Sistemi

Türkiye Mobese Görüntü Takip Türkiye Mobese görüntülerinde OPENCV ve Yolo ile takip sistemi Multiple Object Tracking System in Turkish Mobese with OPE

15 Dec 22, 2022
Implementation of Segformer, Attention + MLP neural network for segmentation, in Pytorch

Segformer - Pytorch Implementation of Segformer, Attention + MLP neural network for segmentation, in Pytorch. Install $ pip install segformer-pytorch

Phil Wang 208 Dec 25, 2022
A booklet on machine learning systems design with exercises

Machine Learning Systems Design Read this booklet here. This booklet covers four main steps of designing a machine learning system: Project setup Data

Chip Huyen 7.6k Jan 08, 2023
Custom Implementation of Non-Deep Networks

ParNet Custom Implementation of Non-deep Networks arXiv:2110.07641 Ankit Goyal, Alexey Bochkovskiy, Jia Deng, Vladlen Koltun Official Repository https

Pritama Kumar Nayak 20 May 27, 2022
Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021)

Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021) This repository contains the code

149 Dec 15, 2022
PGPortfolio: Policy Gradient Portfolio, the source code of "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem"(https://arxiv.org/pdf/1706.10059.pdf).

This is the original implementation of our paper, A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem (arXiv:1706.1

Zhengyao Jiang 1.5k Dec 29, 2022
The repository contain code for building compiler using puthon.

Building Compiler This is a python implementation of JamieBuild's "Super Tiny Compiler" Overview JamieBuilds developed a wonderfully educative compile

Shyam Das Shrestha 1 Nov 21, 2021
VOGUE: Try-On by StyleGAN Interpolation Optimization

VOGUE is a StyleGAN interpolation optimization algorithm for photo-realistic try-on. Top: shirt try-on automatically synthesized by our method in two different examples.

Wei ZHANG 66 Dec 09, 2022
Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021.

UniRE Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021. Requirements python: 3.7.6 pytorch: 1.8.1 transformers:

Wang Yijun 109 Nov 29, 2022
Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

FPT_data_centric_competition - Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

Pham Viet Hoang (Harry) 2 Oct 30, 2022
Locally Constrained Self-Attentive Sequential Recommendation

LOCKER This is the pytorch implementation of this paper: Locally Constrained Self-Attentive Sequential Recommendation. Zhankui He, Handong Zhao, Zhe L

Zhankui (Aaron) He 8 Jul 30, 2022
A model that attempts to learn and benefit from data collected on card counting.

A model that attempts to learn and benefit from data collected on card counting. A decision tree like model is built to win more often than loose and increase the bet of the player appropriately to c

1 Dec 17, 2021
Bayesian Image Reconstruction using Deep Generative Models

Bayesian Image Reconstruction using Deep Generative Models R. Marinescu, D. Moyer, P. Golland For technical inquiries, please create a Github issue. F

Razvan Valentin Marinescu 51 Nov 23, 2022
deep learning for image processing including classification and object-detection etc.

深度学习在图像处理中的应用教程 前言 本教程是对本人研究生期间的研究内容进行整理总结,总结的同时也希望能够帮助更多的小伙伴。后期如果有学习到新的知识也会与大家一起分享。 本教程会以视频的方式进行分享,教学流程如下: 1)介绍网络的结构与创新点 2)使用Pytorch进行网络的搭建与训练 3)使用Te

WuZhe 13.6k Jan 04, 2023
Implementation of a memory efficient multi-head attention as proposed in the paper, "Self-attention Does Not Need O(n²) Memory"

Memory Efficient Attention Pytorch Implementation of a memory efficient multi-head attention as proposed in the paper, Self-attention Does Not Need O(

Phil Wang 180 Jan 05, 2023
Code in PyTorch for the convex combination linear IAF and the Householder Flow, J.M. Tomczak & M. Welling

VAE with Volume-Preserving Flows This is a PyTorch implementation of two volume-preserving flows as described in the following papers: Tomczak, J. M.,

Jakub Tomczak 87 Dec 26, 2022
the code for our CVPR 2021 paper Bilateral Grid Learning for Stereo Matching Network [BGNet]

BGNet This repository contains the code for our CVPR 2021 paper Bilateral Grid Learning for Stereo Matching Network [BGNet] Environment Python 3.6.* C

3DCV developer 87 Nov 29, 2022
Adversarial vulnerability of powerful near out-of-distribution detection

Adversarial vulnerability of powerful near out-of-distribution detection by Stanislav Fort In this repository we're collecting replications for the ke

Stanislav Fort 9 Aug 30, 2022
Deep learning based hand gesture recognition using LSTM and MediaPipie.

Hand Gesture Recognition Deep learning based hand gesture recognition using LSTM and MediaPipie. Demo video using PingPong Robot Files Pretrained mode

Brad 24 Nov 11, 2022
This program uses trial auth token of Azure Cognitive Services to do speech synthesis for you.

🗣️ aspeak A simple text-to-speech client using azure TTS API(trial). 😆 TL;DR: This program uses trial auth token of Azure Cognitive Services to do s

Levi Zim 359 Jan 05, 2023