Implementation of Google Brain's WaveGrad high-fidelity vocoder

Overview

alt-text-1

WaveGrad

Implementation (PyTorch) of Google Brain's high-fidelity WaveGrad vocoder (paper). First implementation on GitHub with high-quality generation for 6-iterations.

Status

  • Documented API.
  • High-fidelity generation.
  • Multi-iteration inference support (stable for low iterations).
  • Stable and fast training with mixed-precision support.
  • Distributed training support.
  • Training also successfully runs on a single 12GB GPU with batch size 96.
  • CLI inference support.
  • Flexible architecture configuration for your own data.
  • Estimated RTF on popular GPU and CPU devices (see below).
  • 100- and lower-iteration inferences are faster than real-time on RTX 2080 Ti. 6-iteration inference is faster than one reported in the paper.
  • Parallel grid search for the best noise schedule.
  • Uploaded generated samples for different number of iterations (see generated_samples folder).
  • Pretrained checkpoint on 22KHz LJSpeech dataset with noise schedules.

Real-time factor (RTF)

Number of parameters: 15.810.401

Model Stable RTX 2080 Ti Tesla K80 Intel Xeon 2.3GHz*
1000 iterations + 9.59 - -
100 iterations + 0.94 5.85 -
50 iterations + 0.45 2.92 -
25 iterations + 0.22 1.45 -
12 iterations + 0.10 0.69 4.55
6 iterations + 0.04 0.33 2.09

*Note: Used an old version of Intel Xeon CPU.


About

WaveGrad is a conditional model for waveform generation through estimating gradients of the data density with WaveNet-similar sampling quality. This vocoder is neither GAN, nor Normalizing Flow, nor classical autoregressive model. The main concept of vocoder is based on Denoising Diffusion Probabilistic Models (DDPM), which utilize Langevin dynamics and score matching frameworks. Furthemore, comparing to classic DDPM, WaveGrad achieves super-fast convergence (6 iterations and probably lower) w.r.t. Langevin dynamics iterative sampling scheme.


Installation

  1. Clone this repo:
git clone https://github.com/ivanvovk/WaveGrad.git
cd WaveGrad
  1. Install requirements:
pip install -r requirements.txt

Training

1 Preparing data

  1. Make train and test filelists of your audio data like ones included into filelists folder.
  2. Make a configuration file* in configs folder.

*Note: if you are going to change hop_length for STFT, then make sure that the product of your upsampling factors in config is equal to your new hop_length.

2 Single and Distributed GPU training

  1. Open runs/train.sh script and specify visible GPU devices and path to your configuration file. If you specify more than one GPU the training will run in distributed mode.
  2. Run sh runs/train.sh

3 Tensorboard and logging

To track your training process run tensorboard by tensorboard --logdir=logs/YOUR_LOGDIR_FOLDER. All logging information and checkpoints will be stored in logs/YOUR_LOGDIR_FOLDER. logdir is specified in config file.

4 Noise schedule grid search

Once model is trained, grid search for the best schedule* for a needed number of iterations in notebooks/inference.ipynb. The code supports parallelism, so you can specify more than one number of jobs to accelerate the search.

*Note: grid search is necessary just for a small number of iterations (like 6 or 7). For larger number just try Fibonacci sequence benchmark.fibonacci(...) initialization: I used it for 25 iteration and it works well. From good 25-iteration schedule, for example, you can build a higher-order schedule by copying elements.

Noise schedules for pretrained model
  • 6-iteration schedule was obtained using grid search. After, based on obtained scheme, by hand, I found a slightly better approximation.
  • 7-iteration schedule was obtained in the same way.
  • 12-iteration schedule was obtained in the same way.
  • 25-iteration schedule was obtained using Fibonacci sequence benchmark.fibonacci(...).
  • 50-iteration schedule was obtained by repeating elements from 25-iteration scheme.
  • 100-iteration schedule was obtained in the same way.
  • 1000-iteration schedule was obtained in the same way.

Inference

CLI

Put your mel-spectrograms in some folder. Make a filelist. Then run this command with your own arguments:

sh runs/inference.sh -c <your-config> -ch <your-checkpoint> -ns <your-noise-schedule> -m <your-mel-filelist> -v "yes"

Jupyter Notebook

More inference details are provided in notebooks/inference.ipynb. There you can also find how to set a noise schedule for the model and make grid search for the best scheme.


Other

Generated audios

Examples of generated audios are provided in generated_samples folder. Quality degradation between 1000-iteration and 6-iteration inferences is not noticeable if found the best schedule for the latter.

Pretrained checkpoints

You can find a pretrained checkpoint file* on LJSpeech (22KHz) via this Google Drive link.

*Note: uploaded checkpoint is a dict with a single key 'model'.


Important details, issues and comments

  • During training WaveGrad uses a default noise schedule with 1000 iterations and linear scale betas from range (1e-6, 0.01). For inference you can set another schedule with less iterations. Tune betas carefully, the output quality really highly depends on it.
  • By default model runs in a mixed-precision way. Batch size is modified compared to the paper (256 -> 96) since authors trained their model on TPU.
  • After ~10k training iterations (1-2 hours) on a single GPU the model performs good generation for 50-iteration inference. Total training time is about 1-2 days (for absolute convergence).
  • At some point training might start to behave weird and crazy (loss explodes), so I have introduced learning rate (LR) scheduling and gradient clipping. If loss explodes for your data, then try to decrease LR scheduler gamma a bit. It should help.
  • By default hop length of your STFT is equal 300 (thus total upsampling factor). Other cases are not tested, but you can try. Remember, that total upsampling factor should be still equal to your new hop length.

History of updates

  • (NEW: 10/24/2020) Huge update. Distributed training and mixed-precision support. More correct positional encoding. CLI support for inference. Parallel grid search. Model size significantly decreased.
  • New RTF info for NVIDIA Tesla K80 GPU card (popular in Google Colab service) and CPU Intel Xeon 2.3GHz.
  • Huge update. New 6-iteration well generated sample example. New noise schedule setting API. Added the best schedule grid search code.
  • Improved training by introducing smarter learning rate scheduler. Obtained high-fidelity synthesis.
  • Stable training and multi-iteration inference. 6-iteration noise scheduling is supported.
  • Stable training and fixed-iteration inference with significant background static noise left. All positional encoding issues are solved.
  • Stable training of 25-, 50- and 1000-fixed-iteration models. Found no linear scaling (C=5000 from paper) of positional encoding (bug).
  • Stable training of 25-, 50- and 1000-fixed-iteration models. Fixed positional encoding downscaling. Parallel segment sampling is replaced by full-mel sampling.
  • (RELEASE, first on GitHub). Parallel segment sampling and broken positional encoding downscaling. Bad quality with clicks from concatenation from parallel-segment generation.

References

Owner
Ivan Vovk
• Mathematics • Machine Learning • Speech technologies
Ivan Vovk
基于Flask开发后端、VUE开发前端框架,在WEB端部署YOLOv5目标检测模型

基于Flask开发后端、VUE开发前端框架,在WEB端部署YOLOv5目标检测模型

37 Jan 01, 2023
exponential adaptive pooling for PyTorch

AdaPool: Exponential Adaptive Pooling for Information-Retaining Downsampling Abstract Pooling layers are essential building blocks of Convolutional Ne

Alexandros Stergiou 55 Jan 04, 2023
PolyTrack: Tracking with Bounding Polygons

PolyTrack: Tracking with Bounding Polygons Abstract In this paper, we present a novel method called PolyTrack for fast multi-object tracking and segme

Gaspar Faure 13 Sep 15, 2022
Data for "Driving the Herd: Search Engines as Content Influencers" paper

herding_data Data for "Driving the Herd: Search Engines as Content Influencers" paper Dataset description The collection contains 2250 documents, 30 i

0 Aug 17, 2021
Demonstration of the Model Training as a CI/CD System in Vertex AI

Model Training as a CI/CD System This project demonstrates the machine model training as a CI/CD system in GCP platform. You will see more detailed wo

Chansung Park 19 Dec 28, 2022
Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly

Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly Code for this paper Ultra-Data-Efficient GAN Tra

VITA 77 Oct 05, 2022
Understanding Convolution for Semantic Segmentation

TuSimple-DUC by Panqu Wang, Pengfei Chen, Ye Yuan, Ding Liu, Zehua Huang, Xiaodi Hou, and Garrison Cottrell. Introduction This repository is for Under

TuSimple 585 Dec 31, 2022
Bringing Computer Vision and Flutter together , to build an awesome app !!

Bringing Computer Vision and Flutter together , to build an awesome app !! Explore the Directories Flutter · Machine Learning Table of Contents About

Padmanabha Banerjee 14 Apr 07, 2022
Jiminy Cricket Environment (NeurIPS 2021)

Jiminy Cricket This is the repository for "What Would Jiminy Cricket Do? Towards Agents That Behave Morally" by Dan Hendrycks*, Mantas Mazeika*, Andy

Dan Hendrycks 15 Aug 29, 2022
Non-stationary GP package written from scratch in PyTorch

NSGP-Torch Examples gpytorch model with skgpytorch # Import packages import torch from regdata import NonStat2D from gpytorch.kernels import RBFKernel

Zeel B Patel 1 Mar 06, 2022
4K videos with annotated masks in our ICCV2021 paper 'Internal Video Inpainting by Implicit Long-range Propagation'.

Annotated 4K Videos paper | project website | code | demo video 4K videos with annotated object masks in our ICCV2021 paper: Internal Video Inpainting

Tengfei Wang 21 Nov 05, 2022
这是一个facenet-pytorch的库,可以用于训练自己的人脸识别模型。

Facenet:人脸识别模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download 预测步骤 How2predict 训练步骤 How2train 参考资料 Reference 性能情况 训练数据

Bubbliiiing 210 Jan 06, 2023
[CVPR 2021] Region-aware Adaptive Instance Normalization for Image Harmonization

RainNet — Official Pytorch Implementation Region-aware Adaptive Instance Normalization for Image Harmonization Jun Ling, Han Xue, Li Song*, Rong Xie,

130 Dec 11, 2022
Repo 4 basic seminar §How to make human machine readable"

WORK IN PROGRESS... Notebooks from the Seminar: Human Machine Readable WS21/22 Introduction into programming Georg Trogemann, Christian Heck, Mattis

experimental-informatics 3 May 29, 2022
Official Code for ICML 2021 paper "Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline"

Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline Ankit Goyal, Hei Law, Bowei Liu, Alejandro Newell, Jia Deng Internati

Princeton Vision & Learning Lab 115 Jan 04, 2023
MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity

MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity Introduction The 3D LiDAR place recognition aim

16 Dec 08, 2022
Code for paper "Context-self contrastive pretraining for crop type semantic segmentation"

Code for paper "Context-self contrastive pretraining for crop type semantic segmentation" Setting up a python environment Follow the instruction in ht

Michael Tarasiou 11 Oct 09, 2022
Train/evaluate a Keras model, get metrics streamed to a dashboard in your browser.

Hera Train/evaluate a Keras model, get metrics streamed to a dashboard in your browser. Setting up Step 1. Plant the spy Install the package pip

Keplr 495 Dec 10, 2022
Face Recognition & AI Based Smart Attendance Monitoring System.

In today’s generation, authentication is one of the biggest problems in our society. So, one of the most known techniques used for authentication is h

Sagar Saha 1 Jan 14, 2022
Build a small, 3 domain internet using Github pages and Wikipedia and construct a crawler to crawl, render, and index.

TechSEO Crawler Build a small, 3 domain internet using Github pages and Wikipedia and construct a crawler to crawl, render, and index. Play with the r

JR Oakes 57 Nov 24, 2022